Рефераты. Разработка радиоприемника

В детекторах аналогового типа используется матрица, элементы которой способны «запоминать» суммарный заряд, возбужденный потоком рентгеновских квантов. Аналоговые детекторы, реализованные на монокристаллическом кремнии, как и квантовый детектор, регистрируют излучение с помощью люминофора экрана или непосредственно в области пространственного заряда транзистора.

На рис. 6 соответственно показаны электрическая схема и структура пикселя аналогового детектора. Достоинство таких детекторов, по сравнению с предыдущими, – отсутствие жестких требований к быстродействию внешних устройств; возможность приема излучения высокой интенсивности, когда временное отделение одного кванта от другого невозможно, что обычно имеет место при приеме излучения в оптическом диапазоне частот. Недостатки – меньшая контрастность (динамический диапазон) из-за потерь, связанных с самопроизвольной релаксацией информационного заряда в пикселях матрицы и неточностью преобразования аналоговых сигналов в цифровые; технологические проблемы, аналогичные квантовому детектору.

Работа цифрового детектора мозаичного экрана основана на цифровом отсчете (запоминании) числа квантов, поступивших в каждый элемент матрицы, и запоминании аналогового сигнала, пропорционального выделенной ими энергии. Трехмерная конструкция детекторов этого типа состоит из двух изолированных и механически соединенных с помощью индиевых столбцов пиксельных матриц. При этом первая матрица только принимает излучение, а вторая обрабатывает сигнал пикселя. Обе матрицы изготавливаются с помощью независимых технологических процессов, что позволяет наилучшим образом оптимизировать качество их исполнения. Очевидно, мозаичный экран, построенный на цифровых детекторах, позволяет получить теоретически максимально высокое качество изображения объекта в рентгеновском спектре излучений.

Следует отметить, что возможна и другая, более простая, реализация детектора, например когда принимающая излучение матрица представляет собой сборку из аморфных диодов и сцинтилляторов или матрицу прямого действия на p-i-n‑диодах и резисторах. Такой детектор не требует размещения по периферии кристалла специальных выводов для подключения управляющих устройств. Однако при использовании такой приемной матрицы нельзя получить теоретически предельное качество изображения.

В целом достоинства экрана на цифровом детекторе заключаются в наилучшем, по сравнению с экранами других типов, отношении сигнал/шум, в высокой контрастности, большом динамическом диапазоне, координатной точности и т.п. Его недостатки – высокая стоимость и сложность изготовления.

Из рассмотренного следует, что для создания высококачественных рентгеновских экранов нового поколения наиболее перспективны мозаичные панели на детекторах с пиксельными матрицами на основе функционально-интегрированных структур. Каждое из приведенных здесь технических решений представляется весьма перспективным для создания таких мозаичных рентгеновских экранов, хотя сейчас сложно определить какое из них окажется наиболее конкурентоспособным и рентабельным в будущем. Возможно, наиболее перспективны панели, построенные на основе «квантовых» детекторов, поскольку они дают полную информацию о рентгеновском излучении, проходящем через исследуемый объект. В любом случае необходимо проведение исследовательских работ по анализу эффективности предложенных технических решений.

Следует отметить, что в отечественной промышленности сегодня сложно использовать традиционные технические решения, поскольку в стране отсутствует технология формирования высококачественных аморфных полупроводниковых слоев, требуемых для рентгеновских экранов.



4. Предварительный расчет приемника


Распределение между трактами приёмника частотных и нелинейных искажений. Частотные искажения создаются всеми каскадами приёмника. Общую величину частотных искажений высокочастотной части приёмника определяют из выражения.


Мвч = Мпрес + Мфси + Мупч [дБ], (3)


где Мвч – общая величина частотных искажений высокочастотной части;

Мпрес – частотные искажения преселектора;

Мфси – частотные искажения фильтра сосредоточенной селекции;

Мупч – частотные искажения усилителем промежуточной частоты.

Принимаем значения Мвх.ц = 5, Мфси = 4, Мупч = 3.


Мвч = 3 + 4 + 3 = 12 дБ


Общая величина частотных искажений приёмника (без искажений, вносимых громкоговорителем)


Мобщ = Мвч + Мунч, (4)


где Мунч – частотные искажения в УНЧ, величина которых 2 – 3 дБ.

Принимаем значение Мунч = 2 дБ.


Мобщ = 12 + 2 = 14 дБ.


Должно выполняться условие


Мобщ = М,


где М – заданные частотные искажения на весь приёмник.


14 дБ = 14 дБ


Причиной нелинейных искажений является нелинейность характеристик усилительных приборов и диодов. Наибольшие нелинейные искажения создаются в детекторе и УНЧ. Общую величину нелинейных искажений детектора и УНЧ определяют из выражения


Кг.общ = Кгд + Кгунч, (5)


где Кгд – нелинейные искажения в детекторе Кгд= 1 – 2%;

Кгунч – нелинейные искажения в усилителе низкой частоты

Принимаем следующие значения:


Кгд = 1%, Кгунч = 5%.

Кг.общ = 1% + 5% = 6%.


По результатам расчётов должно выполняться условие


Кг.общ ≤ Кг,


где – Кг – заданные нелинейные искажения на весь приёмник.


6% = 6%.


Определение эквивалентной добротности контуров преселектора и вывод о необходимости применения УРЧ.

В зависимости от заданной величины ослабления зеркального канала определяется минимаотная необходимая добротность контура преселектора. Сначала выбирают минимальное количество контуров и определяют минимальную эквивалентную добротность контура, обеспечивающую заданное ослабление зеркального канала.


, (6)


где Seзк – заданное ослабление сигнала зеркального канала в относительных единицах;

nc – минимальное количество контуров;

fcmax – максимальная частота сигнала, заданного рабочего диапазона частот, кГц;

fзк – частота зеркального канала, кГц;


fзк= fcmax + 2fпр (7)


Принимаем следующие значения nc = 1, fcmax = 0,285 МГц, Seзк = 18


fзк = 0,285×106 + 2 (465×103) = 0,378 МГц.

Qэк.зк=Ö18/(0,378×106)2/(0,285×106)2-1=39,4 [дБ]


Далее выбирают конструктивную добротность контуров преселектора Qкон.

Принимаем для диапазона гектометровых волн Qкон.=100

Должно выполняться условие


Qэк.зк < (0,5 – 0,7) Qкон, (8)


где Qэк.зк – эквивалентная добротность контура преселектора, дБ;

Qкон – конструктивная добротность контура преселектора, дБ;


Qэк.зк < 0,6×100

39,4< 60


Условие выполняется, следовательно УРЧ в приёмнике не применяется.

Расчёт полосы частот входного сигнала П и максимальной добротности контура входной цепи Qэкп, при которой частотные искажения в заданной полосе не превышают допустимых, полученных при распределении их между каскадами.


П = 2 (Fмmax + ∆fсопр + ∆fг), (9)


где ∆fсопр – допустимая неточность сопряжения настроек контуров, которую для декаметрового диапазона выбирают 10 – 15 кГц, километрового и гектометрового 3 – 5 кГц;

∆fг – возможное отклонение частоты гетеродина, равное


∆fг =(0,5 – 1)×10-3 fсmax.


∆fг = 0,7×10-3××0,285×106 = 0,2×103 Гц


Принимаем ∆fсопр=4 кГц


П = 2 (3,5×103 + 4×103 + 0,2×103) = 15,4×103 Гц


Значение Qэкп определяем по формуле


, (10)


где М – частотные искажения преселектора;

П – полоса частот, кГц;

fсmin – минимальная частота сигнала, МГц;

При отсутствии в прёимнике УРЧ


М = Мпрес/2,


Так как УРЧ в приёмнике не применяется, то


М = 5/2 = 2,5


Qэкп=0,285×106Ö2,52-1/15,4×103=42,4 [дБ]


Должно выполняться условие


Qэкп >Qэкзк (11)


42,4 > 39,4


Условие выполняется.

Если условие выполняется, то принимаем рассчитанная Qэкп.

Затем выбирают блок конденсаторов переменной ёмкости, двух- или трёхсекционный, в зависимости от количества контуров, настраиваемых на частоту принимаемого сигнала.

Для расчёта числа поддиапазонов определяют коэффициент диапазона Кд, который может обеспечить выбранный конденсатор переменной ёмкости, и требуемый коэффициент диапазона по частоте Кд.с:


, (12)


где Ссх – принимается диапазонах гектометровых волн 25 – 30 пФ.

Для расчёта принимаем следующие значения Ссх = 25 пФ, Cкmin = 12 пФ, Cкmax = 495 пФ.


________________

Кд=Ö495+25/12+25=3,7


Затем определяем значение Кд.с по формуле:


Кд.с = f 'cmax/f 'cmin, (13)


f 'cmax = 1,02 fcmax, (14)

f 'cmin = f 'cmin/1,02, (15)

f 'cmax = 1,02×0,285×106=0,2907 МГц

f 'cmin =0,285×106/1,02=0,279 МГц

Кд.с = 0,2907 / 0,279 =1,04



Если Кд ≥ Кд.с, то в приёмнике применяется 1 диапазон. Если Кд ≤ Кд.с, то заданный диапазон частот входного сигнала следует разбить на поддиапазоны.


Кд > Кд.с,


3,7 > 1,04.


Условие выполняется, следовательно, в приёмнике достаточно иметь один диапазон.

Выбор схемы детектора и типа диода. Выбираем последовательную схему диодного детектора.

Так как по заданным техническим условиям проектируемый приёмник можно отнести ко второму классу, то в соответствии принимаем значения

Uвхd = 0,3 В, Kd = 0,4.

Напряжение на выходе детектора рассчитываем по формуле:


Uвыхd = KdmUвхdk, (16)


где k = 0,5 – 0,6 – коэффициент, учитывающий потери части выходного напряжения детектора на резисторе,

m = 0,3 – коэффициент модуляции.

Задаёмся следующими коэффициентами k = 0,5, m = 0,3.


Uвыхd = 0,3×0,4×0,5×0,3 = 0,018 В


Выбираем точечный диод типа Д9Б.

Определение необходимого коэффициента усиления от входа до детектора. Для преобразования частоты выбираем транзистор КТ357А для которого fт=80 МГц, Екмах =10В. Проверяем выполнения условий.


fмах=0,1 fт=0,1×80=8 МГц

Uк =12В>Еи=9В


где fмах – максимальная частота заданного рабочего диапозона частот;

fт – предельная частота усиления тока для схемы с общим эммитером при котором h21э=1

Uк - предельно допустимое напряжение на коллекторе транзистора

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.