Рефераты. Разработка PIC-контроллера устройства измерения временных величин сигналов

Таблица 1.9

Параметр

Значение

Начальный ток стока

Крутизна характеристики

5…10,5 мА/В

Напряжение отсечки

³6 В

Ток утечки затвора

10 нА

Коэффициент шума

7,5 дБ

Входная емкость

7 пФ

Проходная емкость

0,8 пФ

Постоянная рассеиваемая мощность

120 мВт

Температура окружающей среды

+85 — -45

Общее тепловое сопротивление


1.5.3 Описание используемых диодов

Импульсные диоды предназначены для преобразования импульсных сигналов.

Основные параметры импульсных диодов: импульсное прямое напряжение диода Uпр. и — наибольшее мгновенное значение прямого напряжения, обусловленное импульсным прямым током диода. Импульсное обратное напряжение диода Uобр. и — мгновенное значение обратного напряжения диода. Импульсный прямой ток диода Iпр. и — наибольшее мгновенное значение прямого тока диода, исключая повторяющиеся и неповторяющиеся переходные токи. Общая емкость диода Сд — значение емкости между выводами диода. Время прямого восстановления диода tвос. пр — время, в течении которого происходит включение диода и прямое напряжение на нем устанавливается от значения, равного нулю, да установившегося значения. Время обратного восстановления диода tвос. обр — время переключения диода с прямого тока на обратное напряжение от момента прохождения тока через нулевое значение до момента достижения обратным током заданного значения. Заряд восстановления диода Qвос — накопленный заряд диода, вытекающий во внешнюю цепь при переключении диода с прямого тока на обратное напряжение.

В таблице 1.10 приведены основные параметры диода КД503Б.

 

Таблица 1.10

Тип

Максимально допустимый импульсный

прямой ток, мА, при tИ = 10 мкс

Максимально допустимый постоянный

или средний прямой ток, мА

Импульсное прямое напряжение, В

Максимально допустимое импульсное

постоянное обратное напряжение, В

Максимальный обратный ток, мкА,

при Uобр max

Время обратного восстановления диода,

мкс

Общая емкость диода, пФ

Температура окружающей среды, оС

от

до

КД503Б

200

20

3,5

30

10

0,01

2,5

-40

+85


1.6 Принцип работы программно–аппаратных средств


Измеряемый сигнал поступает на вход усилителя–формирователя выполненного на двух транзисторах КП313А и КТ368А, что позволяет повысить чувствительность прибора, а также увеличить входное сопротивление за счет истокого повторителя выполненного на транзисторе КП313А.

Такое включение позволяет прибору не вносить дополнительное сопротивление при измерениях. Транзистор VT2 включен в стандартном ключевом режиме и предназначен для усиления входного сигнала по напряжению.

Основной элемент PIC-контроллерного устройства измерения временных велечин сигналов — микроконтроллер PIC16F84, осуществляющий счет импульсов, поступающего на вход прибора после усилителя–формирователя, обработку полученных значений и вывод результатов измерения на табло. Частота (в герцах) отображается индикаторами HG1—HG4 в формате X,YZ·10`Е Гц, где X,YZ — десятичное значение частоты сигнала, а Е — порядок.

Микроконтроллер PIC16F84 имеет в своем составе восьмиразрядный модуль таймера (ТМR0), который может использоваться с восьмиразрядным предделителем. Последний функционирует асинхронно, поэтому таймер способен считать частоту сигналов значительно выше частоты генератора микроконтроллера, которая равна 4 МГц. Минимальное время высокого и низкого уровней входного сигнала — 10 нс, что позволяет модулю ТМR0 функционировать от внешнего сигнала частотой до 50 МГц. Предделитель задействован для повышения точности измерений. Так как его предельный коэффициент деления равен 256, максимальная разрешающая способность счетчика составляет 16 двоичных разрядов. Однако полностью содержимое предделителя невозможно считать программно, подобно регистру. Поэтому чтобы обеспечить разрешающую способность измерения 16 разрядов — 8 старших разрядов считываются из ТМR0, а 8 младших — из предделителя.

Измеряемый сигнал через резистор R2 поступает на вывод RA4 DD1, являющийся входом внешнего сигнала (T0CKI) таймера TMR0. Этот вывод соединен с RB0, переключением которого осуществляется управление режимом счета. Перед измерением производится сброс TMR0 (при этом сбрасывается и предделитель).

Для измерения вывод RB0 конфигурируется как вход на точные интервалы времени, что позволяет внешнему сигналу поступать на вход таймера. Отсчет длительности интервалов осуществляется "зашитой" в микроконтроллер программой и выполняется как точная временная задержка. По истечении ее выход, TMR0 прекращает работу, поскольку на RA4 устанавливается низкий уровень, и внешний сигнал перестает поступать на его вход.

Затем считывается накопленное 16–разрядное значение числа периодов входного сигнала: в старшие 8 разрядов записывается содержимое TMR0, а в младшие — предделителя. Для получения значения предделителя выполняется подпрограмма (с этой целью на выводе RA4 командами BSF и BCF переключается выходной уровень, т.е. программно формируется последовательность коротких импульсов). Каждый импульс инкрементирует предделитель и счетчик импульсов N, после чего проверяется содержимое TMR0, чтобы определить, увеличилось ли оно. Если оно возросло на 1, восьмиразрядное значение предделителя определяется по содержимому счетчика импульсов N как 256 — N. Далее 16–разрядное двоичное значение частоты преобразуется в 6–разрядное десятичное, которое округляется до трехзначного, а затем формируется указанный выше экспоненциальный формат для вывода на табло в динамическом режиме. Сканирование индикаторов происходит с частотой примерно 80 Гц. Высокая нагрузочная способность микроконтроллера позволила подключить индикаторы непосредственно к его выводам.

Измерение производиться в два этапа. Сначала формируется интервал времени (программа задержки) длительностью 1 мс, что соответствует области высоких частот. Если полученное значение частоты более 127 (старший байт — значение TMR0 — и старший разряд младшего байта — значение предделителя — не равны 0), оно преобразуется, и результат выводится на индикаторы. После этого цикл повторяется.

Если же значение частоты менее 127, выполняется второе измерение (для низких частот), при котором формируется интервал времени длительностью 0,5 с. Для оптимизации работы микроконтроллера он объединен с циклом вывода результата предыдущего измерения на индикаторы. Значение частоты более 127 преобразуется для индикации, при меньшем показания индикаторов обнуляются (частота входного сигнала — вне диапазона измерений или отсутствует вообще). После этого в обоих случаях полный цикл измерения повторяется.


2 Аппаратно-программные средства

контроля и диагностики устройства

2.1 Аппаратные средства контроля


При помощи данных измерительных приборов возможна полная наладка и подготовка устройства к работе, а также профилактика в дальнейшем


2.1.1 Логический пробник (одноконтактный)

Однокристальный логический пробник – прибор для индикации двоичного состояния элементов дискретных схем (см. рисунок 2.1).

Задача логического пробника – упростить проверку логических схем, давая пользователю возможность наблюдать логические уровни без настройки и калибровки, которые необходимы при измерениях с помощью осциллографов.

Очень важным достоинством логических пробников является возможность работы с различными ИС. Это очень удобно при эксплуатации вычислительных систем, где, как правило, используются различные комплексы ИС.

Важное качество пробника – это четкость и однозначность показаний.

Основные преимущества логических пробников – компактность, возможность работы в труднодоступных местах, питание от источника проверяемого логического устройства, удобство работы.

Рисунок 2.1 — Логический пробник (режим запоминания одиночных импульсов)

2.1.2 Осциллограф (С1-65А)

Осциллограф – это контрольно-измерительный прибор для измерения параметров сигналов.

Осциллографы компонуют с другими измерительными приборами для повышения их эффективности при эксплуатации, например с мультиметром, приставкой для подсчета логических переключений, цифровым индикатором для отсчета значений напряжений и временных параметров.

1. Основные сведения:

1.1             Осциллограф универсальный С1 - 65А предназначен для исследования формы электрических сигналов путем визуального исследования и измерения их амплитуды и временных параметров.

1.2              Осциллограф может эксплуатироваться в следующих условиях:

а)       температура окружающего воздуха от 243 К ( - 30 С) до 323 К (+50 С);

б) относительная влажность окружающего воздуха до 98% при температуре до 308 К ( +35 С);

в) атмосферное давление 1004 кПа.

1.3     Осциллограф удовлетворяет требования ГОСТа 22261 – 76 и

22737 – 77.

По точности воспроизведения формы сигнала, точности измерения временных интервалов и амплитуд осциллограф С1 – 65А относится ко II классу ГОСТа 22737 – 77.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.