Рефераты. Разработка компонентов инфраструктуры сервисного обслуживания встроенной памяти гибкой автоматизированной системы на кристалле

Пользователи могут подключать к соответствующему супервизору NVRAM различное количество LPSRAM, что позволяет конфигурировать широкое разнообразие плотностей и возможностей. Типовые комбинации включают:

– 16 Мбит, 3 В или 5 В SMT решение, использующее M40Z300 супервизор без верхней батареи с четырьмя маломощными ОЗУ типа M68Z512;

– 1 Мбит или 4 Мбит, 3 В SMT решение, использующее M40SZ100W SNAPHAT супервизор и маломощные SRAM типа M68Z128W или M68Z512W.

Микросхемы серии ZEROPOWER получили свое название за способность сохранять данные при отсутствии внешнего сетевого питания. Они состоят из двух основных компонентов: маломощного ОЗУ (LPSRAM) и супервизора NVRAM (рис. 2.3). Типовое ОЗУ типа LPSRAM потребляет обычно менее одного мкА при работе только с батареей и может сохранять данные в течение нескольких лет при использовании для питания миниатюрной литиевой батарейки.

Супервизор NVRAM состоит из двух основных схем: схемы переключения батареи и схемы защиты записи. Схема переключения батареи переключает питание LPSRAM от системного стабилизированного источника питания (Vcc) на батарейное питание (Vbat). Эта схема осуществляет контроль за Vcc и когда оно начинает падать, питание LPSRAM переключается на резервную батарею.


Рисунок 2.3 – Схема переключения сетевого питания при сервисном обслуживании SoC-памяти NVRAM


При снижении Vcc менее некоторого порогового значения микропроцессор может вести себя неустойчиво, и это может привести к ошибочным записям и даже к очистке содержимого ОЗУ. Схема защиты записи закрывает микропроцессору доступ к LPSRAM для предотвращения такой ситуации.

Все микросхемы ZEROPOWER NVRAM обладают такими же возможностями и никаких других внешних схем при этом не требуется. В настоящее время, выпускаются микросхемы с интегрированными на одном кристалле супервизором NVRAM и LPSRAM с плотностью до 256 кбит и ниже. Для более высоких плотностей пока используются две отдельные микросхемы.


2.8 Корпус SoC-памяти


Микросхемы NVRAM доступны в различных корпусах. Основным корпусом для поверхностного монтажа (SMT) является корпус SNAPHAT (рис. 2.4 а). Микросхема в корпусе SOH 28 имеет стандартное расположение выводов SRAM, а батарея крепится сверху на застежках, что обеспечивает ее легкую замену. Корпус типа CAPHAT (рис. 2.4 б) имеет неотсоединяемую батарею. Он рекомендуется для приложений, использующих монтаж "через отверстие ".


Рисунок 2.4 – Типы корпусов SoC-памяти


Для решений с монтажом "через отверстие" и высокой плотности ОЗУ предлагается гибридный корпус DIP, в котором LPSRAM и супервизор – отдельные микросхемы, установленные на общей печатной плате вместе с батареей (рис. 2.4 с). В настоящее время доступны плотности ОЗУ до 16 Mбит.

С учетом потребностей разработчиков, одним из последних ZEROPOWER NVRAM является микросхема M48Z32V в низкопрофильном корпусе. Микросхема M48Z32V имеет LPSRAM c плотностью памяти 32 Kx8 при питании 3,3 В. Низкопрофильный корпус SOIC с 44 штырьками, возвышается над монтажной платой всего на 0.12" (3,05 мм), что предоставляет пользователям большую гибкость при компоновке платы и снимает для проектировщиков проблемы габарита по высоте.

Микросхема M48Z32V имеет встроенный коммутатор аварийного батарейного питания и цепи защиты от записи при сбоях питания совмещенные с 256 кбит маломощной SRAM. Время доступа для этих микросхем составляет 35 нс для M48Z32V-35MT1 и 70 нс для M48Z32V-70MT1.

Потребляя только 200 нА (при 40° C), M48Z32V может сохранять данные в течение десятилетнего срока службы батареи с емкостью 18 мА/ч. Эта микросхема совместима с системами, уже содержащими литиевые батареи на плате. Сочетание низкопрофильного корпуса со стоимостью M48Z32V позволяет использовать ее как удачное решение NVRAM во многих приложениях.

При использовании своих контактов для подключения к любому батарейному питанию, микросхема M48Z32V может использоваться как обыкновенное асинхронное статическое ОЗУ для любого микропроцессора или микроконтроллера.

Микросхема M48Z32V производится в корпусе SO44, который аналогичен корпусу ST типа SOH44 SNAPHAT, но без верхней батареи. Она питается от источника 3,3 В (±10%) и работает в коммерческом диапазоне температур (от 0 до 70°C).

2.9 Система реального времени в SoC-памяти

Микросхемы TIMEKEEPER NVRAM основаны на использовании базовой технологии NVRAM. Так как в микросхемах ZEROPOWER NVRAM применяется батарейное питание, то добавление часов реального времени существенно расширяет возможности микросхем NVRAM и области их применения. Свое название TIMEKEEPER такие микросхемы получили именно из-за наличия часов реального времени с календарем, которые выдают в систему точное время, день и дату даже при отсутствии внешнего системного питания (рис. 2.5).


Рисунок 2.5 – Схема системы реального времени SoC-памяти TIMEKEEPER


Микросхемы TIMEKEEPER NVRAM изготавливаются на базе ZEROPOWER NVRAM, к которым добавляется схема часов / календаря реального времени, включая кварцевый генератор на 32 кГц. Схема переключения аварийного питания, используемая для сохранения данных в LPSRAM, используется также и для RTC. Аналогично, в интересах защиты записи RTC, применяется и схема защиты записи NVRAM. Генератор RTC оптимизирован по питанию и его потребление не превышает 40 nA.

Принцип работы часов реального времени состоит в использовании генератора 32 кГц с последующим делением частоты несколькими счетчиками. Первый счетчик делит частоту генератора на 32,768 и на его выходе получается сигнал с частотой в один герц. Следующий счетчик считает количество секунд, и раз в минуту выдает сигнал на счетчик минут. Следующие последовательные счетчики продолжают деление частоты вниз вплоть до выдачи одного импульса в столетие. Для управления числом дней в каждом месяце и учета високосного года используется дополнительная логика.

Данные на выходах счетчиков соответствуют текущему времени и дате. Эти параметры переносятся в область распределенной памяти NVRAM и фигурируют как обыкновенные адреса ячеек ОЗУ. Пользователи считывают / записывают время и дату путем чтения / записи этих адресов в пространстве NVRAM.

Буферы обеспечивают "бесшовное" чтение / запись данных RTC. При чтении RTC, кадр захваченных данных о текущем состоянии реального времени сохраняется в буферах, откуда и производится считывание данных микропроцессором. Наличие кадра данных гарантирует неизменность времени в процессе очередного цикла считывания микропроцессором. Аналогично в течение цикла записи, буфера задерживают данные, поступающие от микропроцессора, и ждут конца цикла записи информации "день-дата-время" для одновременной передачи поступивших данных счетчикам часов.

РеГАСтры RTC отображаются в памяти LPSRAM. Для этого задействуется от 8 до 16 байт LPSRAM. День, дата, и время считываются и записываются в виде обыкновенных адресов ОЗУ. Имея в своем составе ZEROPOWER NVRAM, микросхемы TIMEKEEPER NVRAM сохраняют и все их основные особенности, включая отсутствие дополнительных внешних схем. При плотности памяти до 256 кбит, часы реального времени и супервизор NVRAM интегрированы на одном кристалле с LPSRAM. Для более высоких плотностей памяти используется отдельная микросхема LPSRAM. В зависимости от технологии исполнения, компоненты, составляющие микросхему, могут размещаться в одном "гибридном" корпусе, или же на одной подложке в отдельном корпусе ИС (развивающаяся технология упаковки TIMEKEEPER).

Подобно микросхемам TIMEKEEPER NVRAM последовательные часы реального времени (Serial RTC) отслеживают текущее реальное время даже при отсутствии внешнего системного питания. Вместо стандартного асинхронного параллельного интерфейса SRAM, последовательные RTC используют последовательную шину.

Данные микросхемы изготавливаются на основе TIMEKEEPER NVRAM путем уменьшения количества NVRAM до нескольких байт и изменения интерфейса к одному из стандартов, перечисленных выше.

Большинство устройств Serial RTC содержат в себе переключатель батареи, цепи защиты записи и многие другие современные функции микропроцессорного супервизора, например, сброса питания и сторожевого таймера (рис. 2.6).


Рисунок 2.6 – Схема микропроцессорного супервизора в SoC-устройствах Serial RTC


Для приложений, не требующих резервирования или нуждающихся только в краткосрочном резервировании с использованием конденсатора, выпускаются более простые и дешевые устройства Serial RTC, например, M41T0 и M41T80.

Микросхемы полнофункциональных последовательных часов реального времени имеют много функций микропроцессорного супервизора. Например: M41T81 – это Serial RTC с интерфейсом I2C 400 кГц, Alarm, программируемым Watchdog, программируемым генератором меандра, в корпусе SO8 или SOX28 типа SOIC (с встроенным в корпус кварцем). Микросхема M41T94 является первым устройством Serial RTC ST c интерфейсом SPI. В ней имеются интегрированные схемы PОR / LVD, программируемый Watchdog, Alarm, возможность подключения кнопки сброса. Микросхема выпускается в корпусах SO16 и SOH28 SNAPHAT. Микросхема Serial RTC M41ST84 с интерфейсом I2C 400 кГц выделяется расширенными возможностями микропроцессорного супервизора. Кроме функций PОR / LVD, программируемого Watchdog и Alarm она обеспечивает функцию раннего предупреждения о сбое питания (PFI / PFO) и сброс по входу. Производится в корпусе SO16.

Современные микросхемы NVRAM достигли такого уровня интеграции, что некоторые из них (M41ST85, M41ST87 и M41ST95) можно классифицировать и как Serial RTC и как TIMEKEEPER супервизоры. Достигнутый уровень интеграции позволяет теперь размещать кварц непосредственно в монолитном корпусе микросхемы рядом с кристаллом, а не выносить его к верхней батарее. Примером такого решения, обеспечивающего повышение надежности и безопасности, является микросхема М41СТ85МХ6.

Наряду с высоко интегрированными микросхемами Serial RTC, выпускаются устройства, содержащие минимум необходимого для непрерывной выдачи в систему реального времени. К таким устройствам относятся микросхемы M41T0 и M41T80. Они содержат полный набор счетчиков времени и учитывают особенности високосных лет. К дополнительным возможностям этих устройств относятся программируемый сигнал аварии с функцией обработки прерываний, программируемый выходной меандр и отдельный вывод сигнала с частотой 32 кГц, используемый как эталонный входной сигнал для тактовых генераторов других микросхем. Имея такие возможности, данные микросхемы покрывают потребности приложений в значительной части потребительского рынка.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.