Рефераты. Расширение локальных сетей p>Распределенный волоконно-оптический интерфейс передачи данных (FDDI)

Размышления над тем, как повысить производительность сети, являются постоянным источником головной боли для администраторов сетей. Причина - существование не только 100-Мбит/с Ethernet, но и АТМ (Asynchronous
Transfer Mode - асинхронного режима доставки, рассматриваемый ниже). На сегодняшний день самым быстрым и не требующим больших затрат решением продолжает оставаться распределенный волоконно-оптический интерфейс передачи данных (FDDI), предложенный Американским национальным институтом стандартов (ANSI). FDDI обеспечивает передачу данных со скоростью 100
Мбит/с между узлами, рабочими станциями и концентраторами на расстояние до двух километров.

В 1994 году примерно 30 фирм предлагали компоненты для FDDI: мосты, маршрутизаторы, шлюзы и концентраторы. В изделиях стандарта FDDI имеются оптические преобразователи на светодиодах, работающие на длине волны 1300 нм. Применяется многомодовый волокно-оптический кабель со ступенчато изменяющимся показателем преломления; диаметр световода составляет 62,5 мкм, а диаметр оболочки - 125 мкм. Волоконно-оптические версии FDDI все еще очень дороги. Во многих случаях определяющими факторами при выборе этой технологии являются расстояние между связываемыми узлами и степень защиты.
Оптическая передача по волоконно-оптическому кабелю делает данные практически неуязвимыми для помех от расположенной рядом техники и для попыток перехвата.


Основные компоненты сети FDDI

Стандарт FDDI определяет перечень компонентов сети, который включает однократно подключенную станцию (SAS - Single Attached Station), двукратно подключенную станцию (DAS - Dual Attached Station) и концентраторы проводных линий. Соединения однократно подключенных станций с концентраторами имеют топологию звезды (рис. 4). В роли концентраторов могут выступать мэйнфреймы, мини-компьютеры и высокопроизводительные рабочие станции. Разрыв кабеля однократно подключенной станции не выведет из строя всю сеть, потому что концентратор осуществит обход этой станции и продолжит передачу и прием информации.
[pic]

Рис. 4 Сеть FDDI на двойном кабеле

Такие концентраторы весьма привлекательны для системных интеграторов, потому что позволяют подключать к сети от 4 до 16 станций с гораздо меньшими затратами, чем при использовании двукратно подключенных интерфейсов. Кроме того, подключенные к концентраторам устройства можно отключать без какого-либо ущерба для сети в целом. Двукратно подключенное устройство в случае прекращения работы может оказать отрицательное влияние на сеть FDDI, потому что сеть посчитает его неисправным и попытается решить эту проблему путем "заворачивания" (на этом явлении мы остановимся ниже).
Многие промышленные эксперты полагают, что в структурах сетей FDDI концентраторы будут использоваться для компьютеров PC и других рабочих станций, а более дорогие, но устойчивые к системным отказам интерфейсы двукратного подключения - для мини-компьютеров и мэйнфреймов.

Для подсоединения двукратно подключенных станций в сети FDDI используется двойной кабель. Интерфейс двукратного подключения обеспечивает отказоустойчивость системы благодаря своей избыточности. В случае разрыва кабеля сеть выполняет "заворачивание" - включает второе кольцо для обхода отказавшей станции. Сеть продолжает работать, но ее производительность падает. Некоторые поставщики предлагают интерфейсы двукратного подключения с оптическим обводным кабелем, чтобы соединение левой части с ее правой частью не пропадало даже при разрыве кабеля.


Интегрирование сетей FDDI с существующими ЛВС

Основными средствами объединения сетей FDDI с существующими ЛВС являются мосты с инкапсуляцией данных, транслирующие мосты, мосты с маршрутизацией от источника.

Метод инкапсуляции данных, используемый такими фирмами, как Fibronics
Inc., позволяет упаковывать данные в формат FDDI по особым алгоритмам.
Пакет берется из ЛВС и для прохода по кольцу FDDI инкапсулируется
(упаковывается) в FDDI-пакет. Инкапсулирующий мост на стороне приема деинкапсулирует пакет и отправляет его по назначению. В процессах инкапсуляции и деинкапсуляции применяются собственные алгоритмы, вследствие чего инкапсулирующие мосты различных фирм-поставщиков являются несовместимыми с мостами других фирм.

Транслирующие мосты, предлагаемые такими фирмами, как, например, Fiber-
Corn Inc., выполняют переадресацию данных методом, не зависящим от протоколов. Транслирующий мост берет пакет из ЛВС (Ethernet, к примеру) и
Преобразует его в протокол FDDI. В пункте назначения второй мост преобразует протокол FDDI обратно в протокол исходной ЛВС (или другой протокол).

Основные компоненты расширения ЛВС

Современные компьютерные сети состоят из нескольких базовых компонентов: концентраторов (hubs), объединяющих компьютеры (ПК, рабочие станции, серверы) в локальные сети; мостов (bridges), расширяющих возможности локальных сетей по подключению большего числа компьютеров; маршрутизаторов (routers), объединяющих локальные сети, управляющих потоком данных и повышающих безопасность сетей. Вместе эти компоненты, каждый из которых разработан для эффективного решения определенной сетевой проблемы, создают полный ансамбль устройств для построения сетей любого масштаба.

Концентраторы

Изначально локальная сеть предполагала применение кабеля, соединяющего между собой компьютеры. Кабель в этом случае выполняет роль своеобразного
«эфира», который компьютеры используют для передачи сообщений. МДС-адреса
(media access addresses) в пакетах - порциях информации, передаваемых компьютерами, - определяют источник и приемник этой информации. Сообщения, переданные «в эфир», слышат все компьютеры, а МАС-адреса позволяют им разобраться, кому эти сообщения предназначались. Никаких специальных процедур по резервированию или подготовке канала к передаче не требуется - только «говори и слушай». Простота сетей, построенных на таком
«широковещательном» принципе, определила их повсеместное распространение.
Однако с ростом сети обслуживание ее усложняется (при необходимости подключить новый компьютер приходится проводить довольно сложные кабельно- монтажные работы), а надежность такой сети стремительно падает (локализация вышедшего из строя сегмента кабеля часто оказывается сложной, а порой и невыполнимой задачей).

Концентраторы, пришедшие на смену «общему» кабелю, создали гораздо более гибкую и удобную основу для построения локальных сетей. Концентратор работает как «повторитель» (первый уровень OSI-модели), передавая сигнал, поступивший на один из портов, без изменения на остальные порты.
Следовательно, каждый компьютер «слышит» весь трафик в сети, как если бы это была «широковещательная» сеть с общим кабелем. Все разъемные соединения оказываются сосредоточенными в одном месте, упрощая тем самым подключение дополнительных рабочих мест в сеть.

Но концентраторы не решают проблему увеличения полосы пропускания сети
- с ростом количества компьютеров увеличивается и количество пакетов в
«эфире», что ведет к росту коллизий (наложений пакетов один на другой) и соответственно к замедлению работы сети в целом. Многосегментные концентраторы помогают устранить «узкие места», расщепляя сеть на сегменты.
Рабочие станции в рамках одного сегмента конкурируют между собой за общую среду передачи данных, не мешая станциям в другом сегменте. Таким образом, общая пропускная способность сети увеличивается практически кратно числу сегментов. Поскольку каждый сегмент в многосегментном концентраторе является независимым, то для их совместной работы требуется мост, коммутатор или маршрутизатор для передачи пакетов из одного сегмента в другой, что, в свою очередь, приводит к росту накладных расходов - увеличивается стоимость подключения и время передачи пакета между сегментами. Кроме того, возникает проблема конфигурирования таких систем.
Как наиболее оптимальным образом разбить станции по сегментам? Какие приложения предполагают подключение клиента и сервера в рамках одного сегмента? Кому задержка передачи данных через коммутатор или мост не повредит? Но к тому моменту, когда ответы на эти и подобные вопросы получены, в сети происходит еще что-нибудь, что требует дополнительной переконфигурации сетевого оборудования. И поскольку все порты жестко привязаны к кабельной системе, работа администратора сводится к бесконечным путешествиям к месту установки концентратора для проведения необходимой перекоммутации сети.

Конфигурируемые концентраторы

В этом смысле конфигурируемые концентраторы значительно облегчают работу администратора. Порты таких концентраторов назначаются различным сегментам программным путем. Благодаря этому администратор получает возможность перемещать порты между сегментами с системной консоли с помощью
«мыши»; «захватил» порт мышкой, перенес его в другой сегмент - вот и вся работа.

Модульные концентраторы

Модульные концентраторы - это отдельные сетевые устройства (Ethernet- и
Token Ring-концентраторы или серверы дистанционного доступа) в корпусах небольшого размера, которые можно устанавливать друг на друга на столе или в стойку. Каждый модульный блок может работать независимо или соединяться с другими общим кабелем - образуя при этом единый комплекс, которым можно управлять с одного рабочего места. В одной такой системе могут совмещаться устройства различных типов, например коммутаторы, маршрутизаторы и ATM- модули.

Модульные блоки по сравнению с выполненными на шасси имеют умеренную цену. Модульный концентратор с SNMP-управлением на 12 портов обойдется от
60 до 75 долл. за порт. Поскольку все изготовители предоставляют возможность использовать только один управляемый повторитель для каждой модульной системы, цена одного порта с ростом числа клиентов уменьшается.
(Дл сравнения: шасси с конфигурацией на 300 портов стоит около 175 долл. за порт; автономный Ethernet-концентратор на 8 портов фирмы Kingston
Technologies стоит примерно 30 долл. за порт и не содержит средств управления.)

Но почему бы просто не покупать для создания сети лучшие в своем классе устройства? Ответ: такой гетерогенный подход лишает вас централизованной платформы управления. Поскольку каждый изготовитель поставляет собственный пакет для управления, вам придется, чтобы извлечь максимум возможностей из каждого устройства, работать со всеми такими пакетами. В то же время модульные концентраторы представляют платформу, с которой вся система выглядит как единое целое. Каждый порт рассматривается и управляется как ее часть.

Устройства, выполненные на шасси, обеспечивают соединение концентраторных плат и управление ими с помощью общей соединительной панели. Некоторые изготовители шасси, например Bay Networks (Synoptics), используют для управления установленными на шасси концентраторами специальную шину управления. В модульных системах используется похожий, но не идентичный подход. Поскольку каждый концентратор может работать как автономное устройство, способ их соединения между собой зависит от предпочтений конструкторов.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.