Рефераты. Расчет линии связи для системы телевидения

Для низких углов места, значения которых составляют менее 30°, геометрический угол места может быть слегка модифицирован при помощи выражения (2) для учета средней величины рефракции (преломления) в атмосфере. При этом верно рассчитанное истинное значение угла места всегда должно быть больше, чем геометрический угол.


 (2)


где EL - результат вычислений, выполненных по выражению (1). В атласах приводятся значения широты и долготы, выраженные в градусах и минутах. Чтобы их можно было использовать при вычислениях.

Азимут

Истинный азимут AZ (поворот рефлектора антенны) представляет собой угол направления, указывающего на выбранный спутник, который отсчитывается от истинного севера. Магнитный азимут измеряется в градусах от 0 до 360°. Север, восток, юг и запад имеют азимуты

указанные значения необходимо перевести в градусы (с десятичными долями). Для этого следует разделить число минут на 60, а полученный результат умножить на 100 и прибавить к целой части числа градусов. Например, нужно преобразовать 53°15'N в градусы:


53 + [(15/60) х 100] = 53, 25°N.


Значения западной долготы необходимо преобразовать в соответствующие значения восточной долготы и отсчитывать от 0°Е (меридиан по Гринвичу) через 180°Е к 360°Е, которое снова будет являться тем же самым значением 0°Е. Таким образом, для значений долготы, расположенной западнее меридиана по Гринвичу, вычитание значения западной долготы (°W) из 360° дает эквивалентное (соответствующее) значение восточной долготы. Например, значение 3°W будет эквивалентно следующему:


360° - (3°W) = 357°Е.


Стоит иметь в виду, что на широтах выше 810 невозможно наблюдать любой участок геостационарной орбиты спутников. Точно так же и разность значений долготы между земной станцией и желаемым спутником не может превышать данную величину. 0°, 90°, 180° и 360° соответственно. Геостационарная орбита спутников отслеживается магнитными азимутами между 90° и 270° в северном полушарии или от 270° до 90° в южном полушарии. Истинный азимут рассчитывается из следующего выражения:


 (3)


В расчетах для южного полушария цифра 180 из формулы исключается.

Магнитный азимут

Если истинное значение угла азимута вычислено, то магнитный азимут можно легко рассчитать путем обычного сложения или вычитания магнитного склонения в соответствии с местом приема сигнала. Для всех регионов Европы величина западного магнитного склонения добавляется к величине истинного азимута. Величина магнитного склонения будет меняться в зависимости от места расположения земной станции, и ее можно узнать из местных топографических карт. В некоторых случаях вместо применения компаса для установки азимута можно использовать положение Солнца в различное время дня, но на практике это возможно только в том случае, когда предусматривается одна крупная установка. При установке большого количества приемных систем применение данного метода не всегда удобно.

Протяженность линии связи вниз

Длина пути прохождения сигнала, иногда называемая наклонной дальностью, - это расстояние между земной станцией и рассматриваемым спутником. Чем дальше от экватора находится земная станция, тем длиннее будет путь прохождения сигнала. Для вычисления длины пути D используется следующее выражение:


 (4)


Длина волны

Во многих выражениях для упрощения вычислений вместо частоты чаще используется величина длины волны.

Преобразование частоты в длину волны осуществляется следующим образом:


 (5)


где с - скорость света (2, 998 х 108 м/с); f - частота, Гц.

Потери при прохождении сигнала в свободном пространстве

Потери при прохождении сигнала в свободном пространстве LFS, или потери на трассе распространения, выражают ослабление микроволновых сигналов по мере их продвижения к Земле и происходят из-за расходимости луча. В качестве аналогии можно представить падение с расстоянием интенсивности луча фары автомобиля. Потери на трассе распространения возрастают с увеличением частоты и становятся тем больше, чем ниже угол возвышения антенны (угол места). Подходящим выражением для вычисления величины потерь является следующее:



Коэффициент усиления антенны

Коэффициент усиления антенны (Ga) возрастает с увеличением действующего размера антенны, который учитывает ее эффективность (р) и выражается следующей формулой:


 (7)


где d - диаметр антенны, м;

р - процент эффективности антенны (обычно 60-80%);  - длина волны, м.

Примечание Эффективность антенны чаще приводится как нормированное значение меньше 1 (то есть 0, 67 или 0, 8), а не выражается в процентном отношении. В таких случаях из формулы следует удалить цифру 100, стоящую в знаменателе, и подставить значение нормированного коэффициента для р.

Общая шумовая температура приемной системы

Для наземной приемной станции общая шумовая температура приемной системы TSYS складывается из шумовой температуры всех входящих в приемную систему составных частей и включает шумы, внесенные блоком LNB, компонентами волновода, и эквивалентные, или приведенные, шумы антенны.

Главные составляющие, воздействующие на шумовую температуру приемной системы, показаны на рис. 5. 1. Плоскость PQ указывает точку, по отношению к которой приводятся общие шумы приемной системы. Обычно считается, что это точка, расположенная сразу перед входом блока LNB или точка соединительного фланца между компонентами волновода и блока LNB. Эквивалентная шумовая температура антенны ТА получается из всех внесенных шумов, попадающих на антенну, но уменьшенных частичной проницаемостью () облучателя.


Эффективная изотропно - излучаемая мощность

Изотропный излучатель определяется как излучающий равномерно по всем направлениям. Это невозможно получить в реальности, но легко представить наглядно. Используя отражатель, изотропный излучатель может концентрировать всю свою энергию в виде узкого луча, который кажется некоторому отдаленному наблюдателю, находящемуся на другом конце луча, изотропным источником со значительно большей выходной мощностью. Таким образом, понятие эффективной изотропно -излучаемой мощности (ЭИИМ) используется в качестве меры напряженности (силы) сигнала, который передается спутником на Землю. ЭИИМ измеряется в децибелах относительно одного ватта (дБВт) и достигает наивысшего значения в центре луча. Данная величина уменьшается логарифмически по мере удаления от центра луча. Значение ЭИИМ для любого спутника можно получить из соответствующих карт зоны обслуживания, где указаны контуры с равными значениями ЭИИМ. Современные спутники могут в определенной степени формировать контуры ЭИИМ, чтобы соответствовать желаемой зоне обслуживания. Применяемые для этого методы в данном случае не представляют интереса. Номинальное значение ЭИИМ для спутников средней мощности системы полу-СНВ, таких как системы Astra, составляет 52 дБВт. Спутники высокой мощности системы СНВ (DBS) имеют значения ЭИИМ, превышающие 60 дБВт.

Отношение несущая/шум

Для диапазонов частот Кu и Ка отношение несущая/шум (C/N) на входе приемной системы определяется следующим выражением:


 (8)


где EIRP - эффективная изотропно - излучаемая мощность со спутника в направлении места расположения приемной системы, дБВт;

LFS - потери при распространении сигнала в свободном пространстве на участке от Земли до спутника связи, дБ;

С/Тusable - минимально пониженная величина коэффициента добротности приемной системы, дБ/К;

k - постоянная Больцмана (1,38 х 1СГ23 Дж/К);

В - полоса пропускания приемника до детектирования промежуточной частоты ПЧ, Гц;

Aatm - ослабление сигнала за счет поглощения в атмосфере, дБ;

Агаin - затухание сигнала в осадках для заданного процентного отношения времени, дБ.

Примечание При работе на частотах ниже 8 ГГц значениями Ааtm и Аrain можно пренебречь.

При вычислениях для условий ясного неба параметр Аrain исключается, a G/Tusab!e заменяется на номинальный коэффициент добротности G/Tпом.


5.2 Расчет цифровой линии связи

Данный раздел содержит информацию по распространению вычислений от ЧМ модуляции несущей до цифровой или фазовой модуляции. Теория информации классически делится на две отдельно определяемые области:

о кодирование источника информации; о кодирование канала связи.

Сигналы телевизионного изображения дискретизируются с частотой, как минимум вдвое превышающей верхнюю (граничную) частоту видеосигнала, и преобразуются в цифровой поток битов, называемый источником информации. Выход источника информации является входом источника кодирующего устройства. Функция последнего состоит в уменьшении среднего числа битов информации в секунду, которые необходимо передать пользователю через канал связи. Кодирование источника - другая тематическая область - включает в себя изучение методов сжатия информации, например методов, использующихся в стандарте MPEG-2. Нет необходимости затрагивать эту тему, так как интерес в данном случае представляет только конечный поток переданной информации для расчета линии связи. В таких случаях следует пренебречь подробностями кодирования и ссылаться на общий выход источника информации и кодирующего устройства как на источник информации.

Переданный сигнал, несущий полезную информацию, может быть неверно воспринят приемным устройством из-за искажений сигнала, возникающих при передаче по зашумленному каналу связи. Поэтому выход источника информации подсоединяется к кодеру канала связи, где в сигнал вводится избыточность (вставляются дополнительные биты информации). Это делается для того, чтобы уменьшить вероятность появления ошибочных битов. Такая практика называется предварительной коррекцией ошибок (FEC) и является единственным методом обеспечения коррекции ошибок без запроса повторной передачи информации. Вероятность появления ошибочных битов равна частоте ошибочных битов (ВЕR) декодера приемного устройства. Казалось бы, нет необходимости изучать методы цифрового сжатия только для того, чтобы еще раз прибавить дополнительные биты информации перед передачей по каналу связи. Однако для этого есть веские причины.

Пропускная способность канала связи согласно теореме Шеннона

Предварительная коррекция ошибок достигается введением избыточности в систему кодирования канала связи. Дополнительные биты добавляются предсказанным и предопределенным образом, чтобы декодер мог правильно интерпретировать передаваемые биты. Детали составления действительных (реальных) кодов слишком сложны, и в данном контексте их изучение не представляется необходимым.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.