Рефераты. Расчет и проектирование светодиода

Rs=R0ехр[(4·p·s)2/l2],                               (1.13)


где R0 - коэффициент отражения от гладкой поверхности, а s – среднеквадратичное отклонение матовой поверхности от среднего уровня гладкой поверхности.

 

1.2   Полупроводниковые материалы, используемые в производстве светоизлучающих диодов


Таблица 1.1 - Основные материалы для светодиодов

Полупроводник

4050

710, А

Цвет

Эффективность

%

Быстродействие,

Нс

GaAs

9500

9000

ИК

12; 50 5* 0

2

10 5-7 0...10 5-6 0

10 5-9 0...10 5-8 0

GaP

6900

5500

Красный

Зелёный

7

0,7

10 5-7 0...10 5-6 0

10 5-7 0...10 5-6 0

GaN

5200

4400

Зелёный

Голубой

0,01

0,005


GaAs 41-x 0P 4x 0

6600

6100

Красный

Янтарный

0,5

0,04

3 77 010 5-8 0

3 77 010 5-8 0

Ga 41-x 0Al 4x 0As

8000

6750

ИК

Красный

12

1,3

10 5-8 0

3 77 010 5-8 0


In 41-x 0Ga 4x 0P

6590

5700

Красный

Желто-зеленый

0,2

0,1


 

1.2.1   Арсенид галлия

Полупроводниковые светоизлучающие диоды изготавливают в настоящее время на основе бинарных и нтерметаллических соединений типа AIIIBV и многокомпонентных твердых растворов этих соединений. В данной главе будут кратко рассмотрены основные электрофизические свойства наиболее широко применяемых в производстве ветоизлучающих диодов полупроводниковых соединений –GaAs и GaP.

Большое внимание к GaAs в начальный период исследования соединений типа АIIIВV было связано с представлением о том, что На основе GaAs возможно создание высокочастотных и высокотемпературных транзисторов, так как подвижность электронов в нем значительно выше, а их эффективная масса почти на порядок меньшие, чем в Ge. Однако эти ожидания не оправдались, так как время жизни носителей в GaAs оказалось весьма малым.

Первые важные области применения GaAs были связаны с использованием его для производства туннельных диодов. Значительную и все возрастающую роль GaAs играет в производстве фотопреобразователей солнечной энергии в электрическую.

Наиболее массовое применение GaAs нашел в производстве диодных источников спонтанного и когерентного излучений. На основе GaAs созданы высокоэффективные излучающие диоды инфракрасного диапазона, находящие разнообразные применения в оптоэлектронике. Широкое применение в производстве светоизлучающих диодов, знаковых индикаторов, лазеров и ИК диодов находят твердые растворы GaAs с GaP и AlAs.

Основной промышленный метод получения GaAs - метод Чохральского. Значительное распространение находит также горизонтальная направленная кристаллизация по методу Бриджмена. Монокристаллы GaAs по параметрам распределяются на несколько марок. Монокристаллы n-типа легируются Те, Sn или ничем не легируются, монокристаллы р-типа легируются Zn [1].

Содержание посторонних примесей в GaAs n- и р-типов не превышает (% по массе): 1·10-5% Cu; 6·10-5% Со; 1·10-4% Fe; 5·10-6% Mn; 5·10-5% Cr; 2·10-5% Ni.

 

1.2.2   Фосфид галлия

GaP, так же как и GaAs, кристаллизуется в структуре цинковой обманки с ребром элементарной кубической ячейки 5,4506 А. Кратчайшее расстояние между центрами ядер элементов решетки GaP равно 2,36 А, что составляет сумму атомных радиусов Р (1,1 А) и Ga (1,26 А).

Промышленное получение монокристаллического GaP осуществляется в две стадии: синтез-получение крупных поликристаллических слитков и выращивание монокристаллов по методу Чохральского из расплава, находящегося под слоем флюса. Монокристаллы GaP по параметрам делятся на несколько марок. Монокристаллы n-типа легируются Те или S или ничем не легируются, монокристаллы р-типа легируются Zn, монокристаллы высокоомного GaP легируются хромом или другими примесями с глубокой энергией залегания. Следует отметить, что в связи с условиями выращивания (высокая температура, высокое противодавление Р, наличие флюса, отсутствие стойких контейнерных материалов) монокристаллы GaP характеризуются высоким уровнем неконтролируемых фоновых примесей (примерно 5·1016-1·1017 см-3), а также высокой плотностью дислокации (более 104 см-2). Поэтому монокристаллы GaP не обладают пригодной для практики люминесценцией и для получения светоизлучающих р-n-переходов необходимо выращивать эпитаксиальные слои GaP.

2     РАСЧЕТ И ПРОЕКТИРОВАНИЕ СВЕТОДИОДА

 

2.1 Основные параметры светодиода


Uгас. – напряжение гасящее;

Uпит. – напряжение питания;

Uсв. – напряжение светодиода;

Iсв. – ток светодиода ;

Rсв. – нагрузочный резистор светодиода;

Есв. – эффективность светодиода;

F – световой поток;

Р – мощность;

Ω – телесный угол;

α – угол наблюдения;

I – сила света.


2.2 Расчет светодиода

 

Исходные данные:


Ток светодиода – 20 mA;

напряжение сети – 9 В;

напряжение светодиода – 3,6 В;

угол наблюдения – 15°;

сила света – 6,4 кд

 

2.2.1 Расчет эффективности светодиода

Эффективность E светодиодов (далее СИД) определяется отношением светового потока F, производимого СИД к «закачанной» в него мощности P. Это общая эффективность, включающая в себя энергетическую эффективность самого СИД, зависящую от физики работы, материала и конструкции СИД и световую эффективность зрения для спектра излучения данного СИД. Общая эффективность измеряется в люменах (лм) на ватт (Вт):


E=F/P, лм/Вт (2.1)


Но, так как производители указывают, как правило, в качестве основного светотехнического параметра СИД силу света I, измеряемую в канделах, то нужно пересчитать канделы в люмены. Сила света определяет пространственную плотность (интенсивность) светового потока (luminous intensity):


I=F/Ω, лм/ср (2.2)


где Ω – телесный угол, измеряемый в стерадианах (ср).

 

2.2.2 Расчет телесного угла

Для того чтобы ознакомиться с понятием телесного угла, придется совершить краткий экскурс в стереометрию. Площадь поверхности шара радиусом R составляет 4πR2. Если выделить на поверхности шара область площадью R2, то мы получим конус с пространственным углом как раз в один стерадиан. Запомним, что полная площадь поверхности шара составляет 4π стерадиан. Полезно знать, что телесный угол Ω связан с плоским углом α соотношением:


Ω=2π(1-cosα/2), ср (2.3)


Тогда α(1ср)=65°32', α(πср)=120°, α(2πср)=180°, α(4πср)=360°. Угол α это и есть угол, приводимый изготовителями панели как угол наблюдения или угол излучения (viewing angle или radiation angle), определяемый по спаду силы света на 50%.


2.2.3 Примерный расчет эффективности


Теперь, зная приводимый изготовителями угол наблюдения, можно приблизительно определить световой поток СИД: F=IΩ.

Для примера возьмем белый светодиод NSPL500S (Nichia) с углом наблюдения α1=15°. Тогда телесный угол, рассчитанный по формуле (2.3):


Ω=2π(1-cosα/2)=2*3,14(1-cos15/2)=0.0538


Сила света этого СИД 6.4 кд. Значит световой поток, рассчитанный по (2.2) составит:


I=F/Ω, →F=I Ω= 6.4*0,0538=,0344лм.

F1=0.344 лм.


Прямое падение напряжения на СИД составляет 3.6 В при токе 20 mА. Следовательно, «закачиваемая» в СИД мощность составит:


P=U*I=3.6B*20mA=0.072Вт


а эффективность, в соответствии с (2.1) составит:


E1= F/P =0.344лм /0.072Вт=4.78 лм/Вт.


2.2.4 Уточненный расчет эффективности


Более точно телесный угол можно определить по диаграмме излучения, обычно приводимой изготовителями в полярных или декартовых координатах. Для СИД NSPL500S диаграмма выглядит так:


Рисунок 2.1 Диаграмма излучения


Когда мы рассчитываем телесный угол по углу наблюдения, то предполагаем, что излучение сосредоточено в прямоугольнике шириной 15 градусов, высотой единица и площадью S1=15 условных единиц (прямоугольник с зеленой штриховкой). Но если рассчитать площадь под кривой диаграммы направленности (сосчитать интеграл), то она составит S2=17.5 условных единиц (на графике показан равный по площади прямоугольник с красной штриховкой). Это эффективный угол наблюдения. Следовательно, для более точного расчета нужно использовать угол α2=17.5°. Тогда:

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.