Рефераты. Радиотелеметрические системы с временным разделением каналов

. ( 15)


При условии, что коэффициенты модуляции  во всех N каналах одинаковы, формула для коэффициента переходных искажений имеет вид:


 . ( 16)


Если , а расстояние между циклами ,то:


 . ( 17)


Введем понятие среднего коэффициента искажений :


. ( 18)


В этом случае:


. ( 19)


Таким образом, при N >> 2 , . Таким образом, при увеличении N уменьшается  и падает мощность помех .

Основным способом устранения НЧ искажений является применение фиксатора уровня (рисунок 21):

Рисунок 21


Постоянная времени фиксатора уровня канала связи выбирается достаточно большой, но такой величины, чтобы напряжение на емкости успевало отслеживать заваленные НЧ спектра АИМ.

Переходные помехи 2-го рода действуют сильнее на АИМ и менее на ШИМ и ВИМ. Если используются ШИМ и ВИМ, то для уменьшения помех 2-го рода применяют ограничитель.


2.2 Переходные искажения первого рода (в области ВЧ)


Переходные искажения первого рода проявляются как наложение импульсов друг на друга и возникают при недостаточно широкой полосе пропускания тракта или при малом временном интервале между импульсами соседних каналов (рисунок 22):


Рисунок 22


Для анализа переходных помех первого рода аппроксимируют ВЧ часть частотной характеристики общего тракта частотной характеристикой RC – цепи (рисунок 23).

Рисунок 23


Амплитудно – частотная характеристика RC цепи имеет вид:


 , ( 20)


где  - полоса на уровне 0.707, .

В случае переходные искажения 1-го рода в системе ШИМ ошибка равна:


. ( 21)


Т.е. для уменьшения ошибки  необходимо увеличивать полосу тракта  или интервал , возможно использовать предискажения.

Глава 3 Помехоустойчивость РТМС с ВРК

Флюктуационные помехи на входе приемного устройства приводят к изменению амплитуды и длительности импульсов. Помехи, действующие между импульсами называются – интервальными. Помехи, накладывающиеся на импульсы делятся на срединные и краевые. При АИМ путем стробирования приемника можно избавиться только от интервальных помех. При ВИМ и ШИМ использование ограничений по минимуму и максимуму позволяет избавиться от срединных помех, но действие краевых помех остается. Оценим помехоустойчивость РТМС с АИМ-АМ, ШИМ-ЧМ, ФИМ-АМ.

Структурная схема приемной части системы с ВРК изображена на рисунке 24.


Рисунок 24


Полагаем, что отношение сигнал - шум достаточно велико. Шум нормальный белый в полосе приемника. В качестве критерия оценки используется отношение случайной компоненты выходного сигнала к полезной, т.е. относительную случайную ошибку. В этом случае при АИМ-АМ относительная случайная ошибка имеет вид [2]:


 , ( 22)


где  - среднее квадратичное значение шума, - максимальное изменение амплитуды импульса, h – отношение сигнал - шум.

Следовательно для уменьшения относительной случайной ошибки в этом случае необходимо увеличивать отношение сигнал - шум.

При ШИМ-ЧМ относительная случайная ошибка равна:


, ( 23)


где - среднее квадратичное значение флюктуаций фронта импульсов,  - максимальная полезная ширина импульса,  - девиация частоты несущей,  - канальный интервал.

Для уменьшения относительной случайной ошибки системы ШИМ-ЧМ надо увеличить отношение сигнал - шум, девиацию частоты несущей и канальный интервал.

При ФИМ-АМ относительная случайная ошибка имеет вид:


 , ( 24)


- максимальное временное смещение,  – индекс временной модуляции,  - длительность импульсов. Для уменьшения относительной случайной ошибки в этом случае необходимо увеличивать индекс временной модуляции и отношение сигнал – шум.

Глава 4 Многоступенчатая коммутация в РТМС с ВРК

Количество измеряемых величин и точность их измерения меняется в широких пределах, что требует применения разных частот дискретизации. В случае использования одного задающего генератора для увеличения гибкости аппаратуры используют многоступенчатую коммутацию, обеспечивающую разные тактовые частоты.

Принцип многоступенчатой коммутации показан на (рисунке 25).


Рисунок 25


Первая ступень коммутаторов  имеет m входов с временем подключения одного входа . Вторая ступень включает n коммутаторов  с временем подключения . Входы с (n+1) до m используются для передачи служебной информации и осуществления синхронизации, аналоговые входы с (l+1) до К коммутаторов . Для простоты будем считать, что m=n, l=k, тогда , где N – общее число датчиков в схеме.

Возможны два варианта использования схемы (рисунок 25):

1) Все коммутаторы  работают синхронно и синфазно. А , т.е. за время подключения одного входа коммутатора , коммутатор  успевает опросить все m входов. Следовательно, на выходы схемы будут последовательно поданы сигналы всех первых датчиков, затем вторых и т.д. Увеличение частоты опроса для ряда датчиков достигается путем их подключения одновременно к нескольким входам одного коммутатора  (рисунок 26).


Рисунок 26


2) Все коммутаторы работают синхронно и синфазно, а . Т.е. на выходы схемы последовательно подаются сигналы всех датчиков коммутаторов , затем  и т.д. Увеличение частоты опроса ряда датчиков достигается подключением датчика одновременно к нескольким одноименным клеммам разных коммутаторов второй ступени (рисунок 27).


Рисунок 27


Возможно включение третий ступени коммутации.

Глава 5 Синхронизация в РТМС с ВРК

 

5.1 Системы и сигналы синхронизации

Система синхронизации в РТМС с ВРК обеспечивает синхронную и синфазную работу коммутаторов, установленных на передающей и приемной станции. Нарушение синхронизма ведет к потере информации во всех каналах. В циклических РТМС через время , равное периоду опроса, начинается новый цикл. Для разделения каналов необходимо обозначить начало цикла. Для этой цели перед импульсом первого канала включается специальный сигнал (начало кадра), отличающийся от остальных сигналов по амплитуде, длительности или форме (рисунок 28).


Рисунок 28


Такая синхронизация называется кадровой. На приемной стороне осуществляется выделение синхросигнала. Системы синхронизации могут быть двух типов: синхронные и стартстопные. Синхронные системы работают независимо от того, передается информация или нет. В этих системах предъявляются очень высокие требования к стабильности частоты генераторов.

В стартстопных системах передающий и приемный распределители работают совместно в течении одного цикла, равного длине кадра или длительности кодовой комбинации. Каждый новый цикл в них начинается с исходного синфазного положения. Рассмотрим обе системы.

Синхронная система синхронизации.

В этом случае осуществляется подстройка фазы колебаний высокостабильного генератора приемной станции под фазу колебаний передающей станции. В качестве сигналов, по которым производится фазирование, могут использоваться кадровые посылки, канальные сигналы и символы кодовых комбинаций.

Типичная схема коррекции фазы генератора приемной станции изображена на рисунке 2


Рисунок 29


В фазовом дискриминаторе происходит сравнение фаз принимаемых и передаваемых импульсов, далее формируется управляющий сигнал, воздействующий на генератор.

Стартстопные системы синхронизации.

Структура сигнала при стартстопной синхронизации изображена на рисунке 30.

Стартовая, информационные и стоповя посылки отличаются по амплитуде, длительности или форме.


Рисунок 30.

При включении передатчика с помощью стартового импульса запускается синхронизатор приемного устройства. В конце цикла передачи синхронизатор останавливается стоповым импульсом. В промежутке между стартовым и стоповым импульсами передаются информационные посылки.


5.2 Методы кадровой синхронизации

Различают следующие методы кадровой синхронизации: маркерную, безмаркерную и инерционную.

Маркерная синхронизация осуществляется путем передачи в начале кадра синхроимпульса (маркера), отличающегося от информационных и других служебных сигналов. В приемной станции осуществляется обнаружение и выделение маркерного сигнала, из которого формируется кадровый сигнал. Структура селектора маркерного сигнала зависит от его формы. Если маркерный сигнал отличается по амплитуде от информационных импульсов, то схема селектора имеет вид (рисунок 31).


Рисунок 31


Недостатком этой схемы является невысокая помехоустойчивость.

Схема селектора маркерного сигнала, отличающегося от информационных сигналов по длительности, приведена на рисунке 32.

Рисунок 32


Данная схема обладает более высокой помехоустойчивостью, чем схема изображенная на рисунке 31.

Наибольшей помехоустойчивостью обладает схема селектора маркерного сигнала, отличающегося от информационных сигналов по форме (рисунок 33).

Безмаркерная синхронизация является частным случаем маркерной синхронизации, когда синхросигнал отсутствует. Начало кадра определяется по паузе, длительность которой равна удвоенному канальному интервалу (рисунок 34).

При инерционной синхронизации для управления работой слектора приемной станции используется инерционный генератор синхроимпульсов, который подстраивается по фазе принимаемыми синхросигналами.


Рисунок 33

Рисунок 34


При инерционной синхронизации кратковременные сбои не приводят к срыву синхронизма коммутаторов приемной и передающей систем. Рассмотрим блок – схему приемной части канала инерционной синхронизации (рисунок 35).


Рисунок 35


В селекторе осуществляется выделение маркерного сигнала по форме, амплитуде или длительности. В начальный период времени схема стробирования отключена и система осуществляет вхождение в синхронизм. Из выделенного маркерного сигнала формируется синхросигнал. Этот сигнал используется в качестве опорного, по которому производится подстройка фазы генератора. Для повышения помехоустойчивости введено стробирование маркерного сигнала.

ФНЧ обеспечивает инерционность работы схемы при пропадании сигналов синхронизации за определенное время.

Заключение


Радиосвязь - одно из самых простых и надежных средств связи. Рации полезны и удобны, их можно использовать там, где недоступен ни один другой вид связи, системы радиосвязи недороги по цене, легко развертываются и нетребовательны к условиям окружающей.

Наиболее характерными для современных РСПИ являются три формы представления сообщений, которые формируются на борту и передаются по линиям связи:

1.                 Сообщения о наличии/отсутствии некоторого априорно известного сообщения (включения/выключения двигателей, удары метеорита).

2.                 Сообщения о величинах характеризуют значения параметров в определенный момент времени.

3.                 Сообщения о процессах должны с заданной точностью воспроизводить процессы на определенном отрезке времени, т.е. в этом случае также необходимо производить калибровку амплитуды и масштабирование по времени.

Список литературы

1.                 Радиотехнические методы передачи информации: Учебное пособие для вузов / В.А. Борисов, В.В. Калмыков, Я.М. Ковальчук и др.; Под ред. В.В. Калмыкова. М.: Радио и связь. 1990. 304с.

2.                 Системы радиосвязи: Учебник для вузов / Н.И. Калашников, Э.И. Крупицкий, И.Л. Дороднов, В.И. Носов; Под ред. Н.И. Калашникова. М.: Радио и связь. 1988. 352с.

3.                 Тепляков И.М., Рощин Б.В., Фомин А.И., Вейцель В.А. Радиосистемы передачи информации: Учебное пособие для вузов / М.: Радио и связь. 1982. 264с.

4.                 Кириллов С.Н., Стукалов Д.Н. Цифровые системы обработки речевых сигналов. Учебное пособие. Рязань. РГРТА, 1995. 80с.

Размещено на


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.