Рефераты. Радиотелеметрическая система с частотным разделением товаров

Паразитные изменения амплитуды ЧМ сигнала устраняются ограничителем.

Нелинейность ФЧХ при ЧМ сигнале приводит к различию между мгновенными значениями частот на входе и выходе высокочастотной части тракта.



3.3.1 Перекрестные искажения в низкочастотной части группового тракта

Полагаем, что высокочастотная часть тракта искажений не вносит.

Перекрестные искажения в низкочастотной части группового тракта определяются нелинейностью модуляционной и демодуляционной характеристик. Эти искажения проявляются как при АМ, так и при ЧМ во второй ступени. Для анализа перекрестных искажений аппроксимируем АХ степенным полиномом


, ( 28)


где  - постоянные коэффициенты,  - передаваемое и принимаемое многоканальное сообщение.

При анализе обычно ограничиваются тремя первыми членами выражения ( 28). Представим групповое сообщение в виде


, ( 29)


где  - амплитуда поднесущей,  - поднесущая частота i-ого канала. Подставляя ( 29) в ( 28) получим


, ( 30)


где  - перекрестная помеха. Используя формулы тригонометрии можно представить выражение для перекрестной помехи в виде суммы гармонических составляющих. В таблице 1 приведены значения спектральных составляющих помехи.

Выводы:

1.        В системах ЧРК с однополосной модуляцией в первой ступени, при том же числе каналов, уровень помех меньше, чем в системах с АМ, т.к. поднесущие отсутствуют.

2.        Часть составляющих на выход группового тракта не пройдет.

3.        Составляющие четвертого типа не влияют на РТМС с ЧМ, т.к. увеличение составляющих на частотах  устраняется ограничителем при демодуляции.

4.        В полосу группового тракта не попадают постоянные составляющие.

5.        При расчетах необходимо учесть вторых и  третьих гармоник, а также половину комбинационных составляющих шестого и седьмого типа.


Таблица 1

Номер составляющей

Причина появления

Частота

Число составляющих

Общее число

На выходе группового передатчика

Постоянная составляющая

b2

Вторая гармоника

b2

Комбинационная составляющая

b2

Паразитическая составляющая

b3

0 при ЧМ

Третья гармоника

b3

Комбинационная составляющая

b3

2I(I-1)

Комбинационная составляющая

b3



6.        Составляющие, возникающие из-за члена , дают практически равномерный спектр в полосе группового тракта со спектральной плотностью


. ( 31)


7.        Для получения малого уровня перекрестных помех необходимо, чтобы

а) ,

б) уменьшить уровень (применяя ОБП),

в) увеличивать .


3.3.2 Перекрестные искажения в высокочастотной части группового тракта

Полагаем, что низкочастотная часть тракта искажений не вносит. Рассматривается случай ЧМ во второй ступени. Пусть на вход ПРМ поступает ЧМ сигнал.


. ( 32)


Тогда сигнал на выходе тракта имеет вид


, ( 33)



где - АЧХ тракта,  - ФЧХ тракта.

В соответствии с выражениями ( 32), ( 33) мгновенные значения частот ЧМ сигналов на входе и выходе тракта равны


, ( 34)

, ( 35)


где и - фазы ЧМ сигналов на входе и выходе тракта. Если представить ФЧХ в виде полинома


 , ( 36)


то частотная погрешность


. ( 37)


Обычно достаточно .

При линейной ФЧХ в спектре напряжения на выходе демодулятора не появляются новые составляющие. Таким образом, напряжение перекрестных помех на выходе общего демодулятора ЧМ равно при


, ( 38)

модуляция частотный искажение телеметрический

где  - коэффициент передачи частотного детектора.

Определим спектральную плотность помехи , полагая, что модуляция поднесущих отсутствует


. ( 39)


Подставляя ( 39) в ( 38) получим


 ( 40)


где . Выражение в квадратных скобках аналогично выражению для перекрестной помехи в низкочастотной части тракта.

Из теории преобразования Фурье известно, что если две функции связаны выражением


, ( 41)


то их спектральные плотности связаны соотношением


. ( 42)


С учетом соотношений ( 42) и ( 31) спектральная плотность перекрестных помех, возникающих из-за нелинейности ФЧХ, имеет вид


. ( 43)


Из формулы ( 43) следует, что спектральная плотность таких помех имеет квадратичную зависимость от частоты, поэтому влияние перекрестных помех сказывается сильнее на каналы с более высокими поднесущими.

Во многих случаях искажениями из-за нелинейности ФЧХ можно пренебречь по сравнению с искажениями из-за нелинейности АХ группового тракта.

 


4. Выбор поднесущих частот. Телеметрические стандарты


Если число каналов мало (), модно подобрать значение поднесущих частот  таким образом, чтобы продукты нелинейности не попадали в полосы каналов, а располагались между ними. Среди систем с ЧРК наибольшее распространение получили системы ЧМ-ЧМ. Системы ЧМ-ЧМ обычно используются в тех случаях, когда необходимо получить следующие характеристики:

­              точность выше () %;

­              ширину полосы передаваемой информации () кГц;

­              число каналов меньше 25.

Т.е. они находят применение, когда требуется передать информацию со средней точностью и с достаточно широкой полосой при небольшом числе каналов.

Применительно к системам ЧМ-ЧМ разработаны стандарты. При  используются следующие значения поднесущих


Гц, Гц,

Гц, Гц,

Гц, Гц.


Обычно в системах ЧМ-ЧМ необходимо, чтобы относительная девиация частоты равнялась 7,5%, т.е. %.

При большем числе каналов все труднее обеспечить отсутствие перекрестных помех. Поэтому при  значения поднесущих выбирают таким образом, чтобы обеспечить минимум помех. Значения таких поднесущих являются стандартными. В настоящее время на практике используются два вида стандартов. Для первого из них характерна неравномерная шкала поднесущих частот, интервалы между которыми возрастают с увеличением номера канала. При этом полосы частот пропускания каналов оказываются различными. Поднесущие с номерами 1 – 21 обеспечивают передачу параметров с максимальной частотой модуляции от 6 до 2500 Гц. Поднесущие А, В, …Н (восемь поднесущих) обеспечивают передачу более широкополосных сигналов. РТМ системы, использующие первый стандарт, относятся к системам ЧМ-ЧМ с пропорциональной полосой. Для этих систем поднесущие частоты определяются по формуле


, ( 49)


где  - постоянный коэффициент, Гц.

Данный стандарт применяют, когда требуется передать информацию как о медленно, так и о быстро изменяющихся параметрах. Если требуется передать значительное количество однотипных параметров, с одинаковыми граничными частотами, то используется второй стандарт (таблица 3). Здесь интервал между поднесущими принят постоянным и равным 6,7 кГц, а девиация частоты в каждом канале принята кГц для двадцати двух поднесущих или кГц для одиннадцати поднесущих частот. Т.о., для данного стандарта выбор поднесущей частоты осуществляется по формуле


, ( 45)


где кГц, кГц.

В случае системы АМ-АМ выбор поднесущих частот производится с учетом следующих факторов:

­            допустимого уровня переходных помех;

­            нестабильности частоты генераторов поднесущих частот;

­            нестабильности настройки фильтров.

Учет влияния указанных факторов приводит к увеличению разноса поднесущих частот на %.

Таким образом, величина поднесущей частоты k-ого канала


. ( 47)



Заключение


Радиосвязь - одно из самых простых и надежных средств связи. Рации полезны и удобны, их можно использовать там, где недоступен ни один другой вид связи, системы радиосвязи недороги по цене, легко развертываются и нетребовательны к условиям окружающей.

Наиболее характерными для современных РСПИ являются три формы представления сообщений, которые формируются на борту и передаются по линиям связи:

1.                Сообщения о наличии/отсутствии некоторого априорно известного сообщения (включения/выключения двигателей, удары метеорита).

2.                Сообщения о величинах характеризуют значения параметров в определенный момент времени.

3.                Сообщения о процессах должны с заданной точностью воспроизводить процессы на определенном отрезке времени, т.е. в этом случае также необходимо производить калибровку амплитуды и масштабирование по времени.



Список литературы


1.                 Радиотехнические методы передачи информации: Учебное пособие для вузов / В.А.Борисов, В.В.Калмыков, Я.М.Ковальчук и др.; Под ред. В.В.Калмыкова. М.: Радио и связь. 1990. 304с.

2.                 Системы радиосвязи: Учебник для вузов / Н.И.Калашников, Э.И.Крупицкий, И.Л.Дороднов, В.И.Носов; Под ред. Н.И.Калашникова. М.: Радио и связь. 1988. 352с.

3.                 Тепляков И.М., Рощин Б.В., Фомин А.И., Вейцель В.А. Радиосистемы передачи информации: Учебное пособие для вузов / М.: Радио и связь. 1982. 264с.

4.                 Кириллов С.Н., Стукалов Д.Н. Цифровые системы обработки речевых сигналов. Учебное пособие. Рязань. РГРТА, 1995. 80с.

 


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.