Рефераты. Проектирование удаленного устройства индикации

Проектирование удаленного устройства индикации

Содержание


Введение

1. Анализ поставленной задачи

1.1 Обоснование достаточности аппаратных и программа ресурсов

1.2 Доопределение набора аппаратных средств для реализации устройства

1.3 Распределение функций устройства между узлами микроконтроллера

2. Проектирование принципиальной схемы устройства

2.1 Схема включения микроконтроллера

2.2 Формирование тактовых импульсов

2.3 Схема сброса

2.4 Схема входных и выходных устройств

2.5 Схема стабилизатора напряжения

3. Проектирование программного обеспечения микроконтроллера

3.1 Проектирование функции инициализации микроконтроллера

3.2 Проектирование процедур обработки прерываний

3.3 Проектирование процедур ввода информации

3.4 Проектирование процедур вывода информации

3.5 Проектирование процедур управления периферийны! устройствами

3.6 Проектирование процедуры main()

4. Листинг программы

Приложение 1. Схема электрическая принципиальная

Приложение 2. Чертеж печатной платы (вид сверху)

Приложение 3. Чертеж печатной платы (вид снизу)



Ведение


Широко распространенное семейство микроконтроллеров MCS51, выпускаемое целым рядом фирм-производителей (Intel, Philips, Temic, OKI, Siemens и др.), уже являлось де-факто промышленным стандартом для 8-разрядных систем и прекрасно подходило для использования в широком классе задач, особенно если выбирались кристаллы с дополнительными встроенными периферийными устройствами и повышенной тактовой частотой. Но эти микроконтроллеры обладали значительным энергопотреблением. Тогда, если необходимо было получить высокую производительность кристалла при фиксированном энергопотреблении или, наоборот, снизить последнее не теряя производительности, внимание разработчика, как правило, останавливалось на микросхемах Dallas Semiconductor, Microchip или Hitachi. Широко развитые линии PIC-контроллеров фирмы Microchip и микроконтроллеров Н8/300 фирмы Hitachi обеспечивают достаточно высокую производительность при небольшом энергопотреблении. Эффективность работы микроконтроллеров Dallas Semiconductor, имеющих базовую архитектуру MCS51, в среднем превышает стандартную в 2,5 - 3 раза. Появившиеся в последнее время новые процессорные платформы MSP430 фирмы Texas Instruments и ХЕ8000 фирмы Xeraics также заслуживают самого пристального внимания, особенно если основным критерием для конечного приложения является минимальное энергопотребление.

Окончательный выбор разработчиком той или иной микропроцессорной платформы для реализации своей задачи зависит от большого числа разнообразных факторов, включая экономические. Но обычно первостепенным условием остается получение максимально выгодного соотношения "цена - производительность энергопотребление", определяемого сложностью решаемой задачи. Видимо, это обстоятельство и послужило толчком к разработке в середине 1990-х нового 8-разрядного микроконтроллера.

AVR одно из самых интересных направлений, развиваемых корпорацией Atmel. Они представляют собой мощный инструмент для  создания современных высокопроизводительных и экономичных многоцелевых контроллеров. На настоящий момент соотношение "цена - производительность - энергопотребление" для AVR является одним из лучших на мировом рынке 8-разрядных микроконтроллеров. Объемы продаж AVR в мире удваиваются ежегодно. В геометрической прогрессии растет число сторонних фирм, разрабатывающих и выпускающих разнообразные программные и аппаратные средства поддержки разработок для них. Можно считать, что AVR постепенно становится еще одним индустриальным стандартом среди 8-разрядных микроконтроллеров общего назначения.

Области применения AVR очень широки. Для семейства "tiny" -это интеллектуальные автомобильные датчики различного назначения, игрушки, игровые приставки, материнские платы персональных компьютеров, контроллеры защиты доступа в мобильных телефонах, зарядные устройства, детекторы дыма и пламени, бытовая техника, разнообразные инфракрасные пульты дистанционного управления. Для семейства "classic" - это модемы различных типов, современные зарядные устройства, изделия класса Smart Cards и устройства чтения для них, спутниковые навигационные системы для определения местоположения автомобилей на трассе, сложная бытовая техника, пульты дистанционного управления, сетевые карты, материнские платы компьютеров, сотовые телефоны нового поколения а также различные и разнообразные промышленные системы контроля и управления. Для "mega" AVR - это аналоговые (NMT, ETACS, AMPS) и цифровые (GSM, CDMA) мобильные телефоны, принтеры и ключевые контроллеры для них, контроллеры аппаратов факсимильной связи и ксероксов, контроллеры современных дисковых накопителей, CD-ROM и т.д.

В данной работе приводится пример использования AVR типа ATmega16 для построения устройства удаленной индикации, принимающее сигналы по протоколу связи RS-485 и отображающее соответствующую информацию на графическом ЖКИ дисплее фирмы Bolyrain.



1. Анализ поставленной задачи


Постановка задачи; спроектировать удаленное устройство индикации на основе 8-битного AVR микроконтроллера типа ATmega16 с питанием данного устройства от источника питания на 10 V. Требуется обеспечить прием данных по протоколу RS-485 на скорости 9600 бит в секунду, с размером посылки данных 8 бит, проверкой на четность и одним стоповым битом. Данные должны отображаться на графическом LCD-дисплее фирмы Bolymin.


1.1 Обоснование достаточности аппаратных средств и программных ресурсов


Предложенный для решения задачи микроконтроллер ATmegal6 обладает следующими характеристиками:

•   напряжение питания+5 V

•   размер памяти программ 16 К

•   размер EEPROM512 В

•   размер внутренней SRAM 1 К

•   порты ввода/вывода4x8 bit

•   четыре таймера счетчика

•   программируемый последовательный УСАПП

Этих свойств микроконтроллера вполне достаточно для обеспечения взаимодействия с графическим LCD-дисплеем и протоколом обмена данными RS-485, поскольку большой объем памяти программ позволяет обеспечить логику работы всех аппаратных средств микроконтроллера и управление LCD-дисплеем. Кроме того, подключение внешнего источника тактовых импульсов позволяет обеспечить скорость обмена данными до 1 миллиона бит в секунду.


1.2 Доопределение набора аппаратных средств


Для организации канала связи по протоколу RS-485 необходимо использование устройств, отвечающих требованиям этого протокола. Возможное решение - использование схемы МАХ485, которая работает от одного источника питания +5 V, и его выходное сопротивление становится высоким в диапазоне синфазного сигнала от -7 до +12 V при подаче и при выключении питания. Передатчик имеет максимальное время задержки 50 пз и время нарастания и спада менее 80 ns. Это позволяет получить скорость передачи данных до 4 Mbaud.

Поскольку разрабатываемое устройство питается от источника напряжения +10 V, то для обеспечения питания микросхем устройства необходимо использование стабилизатора напряжения, который можно реализовать на микросхеме LM2574 (понижающий импульсный стабилизатор напряжения).


1.3 Распределение функций устройства между узлами микроконтроллера


Разрабатываемое удаленное устройство индикации должно выполнять следующие две главные функции: обеспечение приема данных по каналу связи и индикация обработанных данных на LCD-дисплей.

Вполне логично в качестве приемника использовать встроенный в контроллер программируемый последовательный универсальный синхронно-асинхронный приеме-передатчик (УСАПП). При этом будут задействованы выводы PDO (RxD) и PD1 (TxD), которые подключаются к соответствующим выводам микросхемы МАХ485. Кроме того, для управления микросхемой МАХ485 необходимо подключить также сигналы разрешения приема и передачи данных (сигнал разрешения приема - инверсный), Но поскольку в нашем устройстве не предусмотрена возможность одновременно принимать и передавать данные, представляется удобным использование общего сигнала с одного из выводов контроллера для управления приемом и передачей (вывод порта С РС5). Более того, в частном случае наше устройство не будет передавать данные на внешние устройства, поэтому как один из вариантов может быть использовано просто подключение разрешающих выводов микросхемы МАХ485 к общему постоянному сигналу низкого уровня, что запретит микросхеме передачу данных и она будет все время использоваться как приемник.

Управление LCD-дисплеем осуществляется с помощью восьми линий, по которым передаются данные, и пяти линий, по которым передаются сигналы управления (чтение/запись данных, запись команды и т.п.}. Поэтому для управления дисплеем мы выделим порт А контроллера для передачи сигналов данных и линии РСО - РС4 порта С для передачи сигналов управления.

Все остальные устройства контроллера в нашем (простейшем) случае остаются незадействованными.



2. Проектирование принципиальной схемы устройства


2.1 Схема включения микроконтроллера


Микроконтроллер AVR типа ATmegal6 имеет напряжение питания +5 V, которое подводится к выводу VCC. Так как питание всего нашего устройства +10 V, то питание к микроконтроллеру должно подводится через понижающий импульсный стабилизатор. Кроме этого, микроконтроллер имеет еще два вывода для питания порта А (или АЦП), один из которых (AVCC) должен быть подключен к напряжению питания даже если порт А не используется. При если используется АЦП, то это питание должно подключатся через фильтр низких частот. Второй вывод (AREF) используется для подачи напряжения смещения на АЦП.

В нашем устройстве АЦП не используется, поэтому к выводам VCC и AVCC можно подключить предварительно стабилизированное питание +5 V от стабилизатора, а вывод AREF подключить к общей шине земли.


Рис.1 Схема включения микроконтроллера


2.2 Формирование тактовых импульсов


Тактовые импульсы для работы микроконтроллера можно формировать с помощью либо встроенного генератора импульсов, либо подключая внешний генератор на кварцевом резонаторе. Внутренний генератор тактовых импульсов в нашем случае не обеспечит необходимую стабильность для работы с интерфейсом RS-485, поэтому мы будем использовать внешний кварцевый генератор на 7.3728 MHz. Для работы на такой частоте разработчики фирмы ATMEL советуют использовать два дополнительных конденсатора емкостью 22 pF, включенные по следующей схеме:



2.3 Схема сброса


Схема сброса должна формировать импульс логического нуля для подачи его на инверсный вывод сброса микроконтроллера RESET. Это импульс должен формироваться при, например, нажатии на кнопку сброса устройства или при переключении ключа. Кроме этого, этот сигнал сброса должен подаваться и на вывод сброса LCD - дисплея.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.