Рефераты. Проектирование систем абонентского доступа на основе технологии ADSL для Мичуринского регионального центра связи

Аналогичный механизм имеет электрическая травма, вызывающая фибрилляцию сердца или остановку дыхания.

Для восстановления работы практически здорового сердца необходима дефибрилляция — механическое или электрическое возбуждающее воздействие на сердечную мышцу для преодоления инерции покоя.

Таким образом, при случайном прикосновении уровень воздействия ЭМП на человека и исход электрической травмы зависят от следующих основных факторов:

-величины напряжения прикосновения и тока через тело человека;

-рода тока (постоянный или переменный) и частоты переменного тока;

-продолжительности протекания тока по телу человека (в практике нормирования напряжений прикосновения и токов рассматриваются случаи только кратковременного прикосновения до 10 с);

-пути протекания тока по телу человека (при нормировании напряжений прикосновения и токов принимаются только характерные или чаще всего возникающие случаи протекания тока по путям: ладонь-ладонь, ладонь-ступни, ладони-ступни, ступня-ступня);

-условий внешней среды (высокая влажность, наличие токопроводящей пыли, высокая температура воздуха и др.).

Величина тока в электрической цепи через тело человека определяется сопротивлением этой цепи и приложенным напряжением. Электрическое сопротивление тела человека с точки зрения электротехники — явление специфическое, нелинейное и зависящее от частоты переменного тока. Оно зависит от индивидуальных особенностей человека: веса, роста, состояния кожного покрова ладоней рук и ступней ног. Внутренние ткани организма имеют различное удельное электрическое сопротивление.

Большое значение имеет путь протекания тока. Схема замещения отражает только характерные пути, а при этом их названия (ладонь - ладонь, ступня - ступня и т.п.) более точны, чем в технической литературе (рука - рука, нога - нога и т.п.). Дело в том, что при рассмотрении электрической схемы замещения тела человека, изучаются не любые пути протекания тока, а только характерные. Воздействие электрического тока, например, на акупунктурные точки человеческого тела, слизистые оболочки, область головы может вызвать летальный исход при очень малых его значениях. Электрическая схема замещения в этом случае будет иметь особенности с точки зрения учета малой проводимости нервных клеток или специфики внутреннего сопротивления электрической цепи.

Предельно допустимые уровни напряжений прикосновения и токов при аварийных режимах производственных электроустановок определены для путей тока через тело человека по путям: ладонь— ладонь (рука—рука) и ладонь—ступни (рука—ноги). В течение более 1 с (до 10 с) предельно допустимые токи соответствуют порогу отпускающего переменного тока и неболевого постоянного тока.

Для переменных токов во всех случаях указываются действующие значения, а для выпрямленных — амплитудные.


3.3 Средства защиты от поражения электрическим током


В целях электробезопасности и защиты от опасного воздействия ЭМП при случайных прикосновениях к токоведущим частям должны применяться отдельно или в сочетании друг с другом следующие технические способы и средства защиты:

-защитное заземление;

-защитное зануление;

-выравнивание (в т.ч. уравнивание) потенциалов;

-малое напряжение;

-электрическое разделение сетей;

-защитное отключение;

-изоляция токоведущих частей от работника в широком смысле (электрическая изоляция: рабочая, дополнительная, усиленная, двойная; физическая изоляция: оградительные устройства, расположение на недоступных высоте и расстоянии);

-компенсация токов замыкания на землю;

-предупредительная сигнализация, защитная блокировка, знаки безопасности;

-средства защиты и предохранительные приспособления.
 Нетоковедущие металлические части конструкций электрических машин и аппаратов (трансформаторов, выключателей, блоков питания, двигателей, генераторов, светильников и т.п.) могут оказаться под напряжением электрической установки при повреждении изоляции токоведущих частей и замыкании их на корпус. При этом прикосновение человека к корпусу так же опасно, как и прикосновение к токоведущим частям электроустановок.

Для защиты человека от поражения электрическим током в этих случаях применяются объективные технические средства защиты, которые независимо от воли и желания работника защищают его от возможных аварийных режимов работы. Одно из наиболее эффективных объективных технических средств защиты — защитное заземление.

Защитное заземление — преднамеренное электрическое соединение с заземляющим устройством металлических частей электроустановки или оборудования с целью обеспечения электробезопасности.

Защитное заземление следует отличать от рабочего заземления. Рабочим (функциональным) заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки (например, нейтральные точки генераторов, трансформаторов, заземляющий вывод разрядника, рельсовые фидеры тяговых подстанций и т.п.). По рабочему заземлению постоянно или временно протекает ток рабочего режима электроустановки.

Рабочее заземление предназначено для обеспечения надлежащей работы электроустановок в нормальных и аварийных режимах и является элементом конструкции электроустановки.


3.4 Защитное заземление


3.4.1 Принцип действия и область применения защитного заземления

Назначение защитного заземления – устранение опасности поражения людей электрическим током при появлении напряжения на частях конструкции электроустановок или оборудования, доступных прикосновению, как правило, в режиме замыкания электрической установки на корпус при повреждении электрической изоляции. Для этого между корпусом электроустановки и проводящим пространством земли создается электрическое соединение с достаточно малым сопротивлением.

Если человек коснется корпуса, на который произошло короткое замыкание одной из фаз, образуется электрическая цепь от поврежденной фазы и корпуса на землю и далее к другим фазам через сопротивления изоляции неповрежденных проводов . При наличии защитного заземления ток замыкания проходит по двум параллельно включенным сопротивлениям: сопротивлению заземляющего устройства R и сопротивление человека Rh (рис.3.1). Токи в параллельных цепях распределяются обратно пропорционально электрическим сопротивлениям, поэтому при наличии малого электрического сопротивления заземляющего устройства (не выше 10 Ом) по сравнению с электрическим сопротивлением человеческого тела (сопротивление тела человека зависит от многих факторов, в качестве расчетного значения принимается величина Rh = 1000 Ом) часть тока, проходящая через тело человека, будет мала и безопасна для его здоровья.



3.4.2 Расчет защитного заземления

Для заземления оборудования используем заземляющее устройство, состоящее из соединительной полосы с приваренными к ней стержневыми электродами. Исходные данные для расчета защитного заземления поместим в таблицу 3.1.


Таблица 3.1 – Исходные данные для расчета защитного заземления

Вид грунта

Чернозем

Удельное сопротивление грунта измереное ρ1, Омм

45

Длина вертикального электрода L , м

3,00

Диаметр вертикального электрода d, м

0,12

Ширина соединительной полосы D, м

0,05

Заглубление n, м

0,8

Коэффициент сезонности φ

1,5

Отношение расстояния между электродами к длине электрода

3


1. На основании исходных данных определим предельно допустимое сопротивление заземляющего устройства .В соответствии с требованиями ПУЭ в электроустановках напряжением до 1000 В Rз≤ 4 Ом.

2. Вычислим сопротивление растеканию одиночного вертикального заземлителя, по формуле (3.1).


, (3.1)


где ρ – удельное сопротивление грунта, Омм ;

L – длина вертикального электрода, м;

d – диаметр вертикального электрода, м;

t – расстояние от земли до середины заземлителя, м.

Определим ρ с учетом коэффициента сезонности по формуле (3.2).


 , (3.2)


где φ – коэффициента сезонности

 

3. Определим необходимое количество вертикальных электродов по формуле (3.3).


, (3.3)


где RB – сопротивление растеканию одиночного вертикального заземлителя, Ом;

Rз – предельно допустимое сопротивление заземляющего устройства, Ом;

ηB – коэффициент использования вертикальных заземлителей, принимается по справочным данным [9 ] ηB = 0,86.

 шт.

Сопротивление растеканию тока вертикальных электродов в групповом заземлителе определим по формуле (3.4).


 (3.4)


 Ом

4.Определим сопротивление растеканию горизонтальной соединительной полосы Rп. При этом длина полосы определяется по формуле (3.5) для заземлителей расположенных в ряд.


 , (3.5)


где А – отношение расстояния между вертикальными электродами к

длине электрода L.

 м

Сопротивление растеканию соединительной полосы определим по формуле (3.6).


, (3.6)


где D – ширина соединительной полосы, м;

n – глубина расположения соединительной полосы в грунте, м.

Ом

Возникает экранирование между горизонтальными и вертекальными составляющими. Сопротивление растеканию соединительной полосы в групповом заземлителе, с учетом экранирующего эффекта вертикальных электродов определяется по формуле (3.7).


, (3.7)


где ηг – коэффициент использования горизонтальной соединяющей

полосы. Принимается по справочным данным [9] ηг =0,9.

Ом

5. Результирующее сопротивление растеканию тока группового заземлителя (всего заземляющего устройства) определим по формуле(3.8).

 (3.8)


 

Сравнивая полученное значение Rгр с допустимой величеной RЗ, делаем вывод, что расчет выполнен правильно, т.к. Rгр=2,21  RЗ= 4.

Схема рассчитанного защитного заземления представлена на рис.3.2.


4. ЭКОНОМИЧЕСКАЯ ЧАСТЬ

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.