Рефераты. Проектирование и технология радиоэлектронных средств

Подробно этапы жидкого химического анизотропного травления представлены на рис. 12


Рис. 12


1.                 (100 – подложка)

2.                 p + легирование для получения слоя остановки травителя

3.                 осаждение эпитаксиального слоя

4.                 окисление

5.                 литография и травление SiO2

6.                 анизотропное травление

Кремниевая поверхностная микрообработка

Главной особенностью этой технологии является то, что она совместима с полупроводниковой технологией, для микрообработки используется КМОП технология.


Параметры процесса

Преимущества

Недостатки

1. Плазмохимическое осаждение из паровой фазы или химическое осаждение из паровой фазы при пониженном давлении поликристаллического кремния, фосфорокварцевого стекла.

1. Осмысленно получаемая горизонтальная геометрическая форма

1. Уменьшенное отношение ширины канала к длине

2. Маскирование полимерами и тонкими плёнками: - нанесение фоторезиста - термически SiO2 - химическим осаждением из паровой фазы при пониженном давлении SiO2 или Si3N4 фосфорокварцевого стекла.

2. Изменяемый профиль

Сокращение количества материалов

3. Сухое и жидкое термическое окисление.

3. Есть возможность получать свободные структуры


4. Геометрическая форма определяется маскированием и при травлении.

4. Совместимость с КМОП.


5. Травление (сухое и жидкое)



LIGA технология

Технология разработана в Германии примерно 30 лет назад. Аббревиатура означает - рентгенолитография, гальваника и формовка. Сущность процесса заключается в использовании рентгеновского излучения от синхротрона для получения глубоких, с отвесными стенками топологических картин в полимерном материале. Излучение синхротрона имеет сверхмалый угол расходимости пучка. Источником излучения являются высокоэнергетические электроны (энергия Е>1ГэВ) движущиеся с релятивистскими скоростями. Глубина проникновения излучения достигает единиц миллиметров. Это обуславливает высокую эффективность экспонирования при малых временных затратах.

SIGA технология

Аббревиатура означает - ультрафиолетовая литография, гальваника и формовка. Из особенностей этого процесса можно отметить, что можно управлять шириной профиля и то, что технология совместима с технологией тонких плёнок.

Технология корпускулярно-лучевого формообразования

В настоящее время существуют два направления корпускулярно-лучевого формообразования: локально-стимулированный рост (осаждение или полимеризация) и локально-стимулированное прецизионное травление, в основе которых лежит воздействие на среду или материал концентрированного потока энергии (световые, электронные, ионные пучки) управляемого во времени и пространстве. Традиционной технологией формирования объемного рисунка в стекле, полимерах, керамике является обработка объекта остросфокусированным лазерным пучком (лазерное микрофрезирование).

Данный вид воздействия в зависимости от локально выделяемой мощности (105-109 Вт/см2), длительности и скважности воздействия, поглощающей способности обрабатываемого материала и его температуропроводности позволяет осуществлять как процессы модифицирования материалов, так и удаления за счет испарения. Изменение глубины фокуса наряду с вариацией ранее указанных параметров позволяет переходить от поверхностной к объемной микрообработке объектов.

В последнее время за рубежом применительно к решению задач формирования трехмерных микрообъектов интенсифицировались работы в области локального стимулированного роста 3D-структур сложной конфигурации (пружины, клапаны). Существует два основных направления получения объемных микрообъектов за счет лазерной стимуляции:

·                     лазерное осаждение из газовой фазы (LCVD) [3, 4, 5];

·                     фотостимулированная полимеризация [6].

Последний вариант получения объемных микрообъектов из полимеров назван микростереолитографией. Осаждение и полимеризация осуществляются слой за слоем и позволяют реализовать разнообразные трехмерные объекты размером до нескольких миллиметров с микронным разрешением.

Достоинствами лазерного формообразования являются:

·                     возможность реализации операций в открытых не вакуумных системах, что упрощает позиционирование и перемещение объекта;

·                     возможность работы не только с плоскими (планарными) объектами, но и с заготовками сложной формы, возможность создания сложного рельефа.

·                     возможность обеспечения высокой степени автоматизации обработки, гибкость процесса и перестраиваемость в реальном масштабе времени;

·                     возможность осуществлять модифицирование свойств материала, определяющее изменение физико-химических характеристик (например, структуры или фазовый состав, механическую прочность или растворимость).

В качестве недостатков метода лазерного формообразования можно отметить:

·                     невысокую производительность метода из-за индивидуального характера обработки;

·                     остаточные явления в материале из-за паразитного воздействия лазерного излучения в зоне обработки и необходимости рассеяния значительной энергии в малых объемах;

·                     относительно высокую сложность систем пространственного позиционирования пучка и объекта при необходимости иметь микронное пространственное разрешение и высокие скорости обработки;

·                     ограниченный срок службы дорогостоящих оптических систем при использовании высокоэнергетических воздействий.

Наряду с лазерным формообразованием возможно применение электронной, ионной и плазменной микрообработки. Однако особенности получения фокусировки и позиционирования данных видов воздействий, позволяющих обеспечить субмикронное разрешение, требуют использования вакуумных технологических систем, а также создают существенные ограничения по глубинам обработки в условиях проведения пространственно прецизионных операций.

MUMPs

MUMPs - аббревиатура означает многопользовательская МЭМС технология - это очень известная коммерческая программа, которая предоставляет разработчику рентабельный доступ к поверхностной механической обработке. Эта программа, предлагаемая исключительно Cronos, предназначена для предоставления универсальной микрообработки разным пользователям, которые желают проектировать и изготовлять MEMS устройства. Она начала использоваться в декабре 1992 года. Этот процесс, можно сказать, трамплин, для того чтобы проектировать и проверять опытные образцы МЭМС устройств и ускорять процессы развития изделия. MUMPs - это процесс 3-х слойной поликристаллической поверхностной микрообработки, который успешно сочетает в себе основные стадии более простых процессов.

Волоконная технология

Изделия из стекла с малым поперечным сечением в виде определенной микроструктуры и технология их изготовления известны достаточно давно (микроканальные пластины, рентгеношаблоны из стекловолокна, устройства волоконной оптики). Суть стекловолоконной технологии заключается в спекании пучка стеклянных волокон (полых или сплошных), различающихся избирательностью к травлению по отношению к растворителю, вытягивании этого пучка до требуемого поперечного размера, разрезании вытянутой части пучка на куски и вытравливании затем из куска растворимых волокон. Укладка волокон в пучок осуществляется таким образом, что нерастворимые волокна образуют в сечении пучка структуру (топологию) изготавливаемой микроструктуры в некотором масштабе.

Так как для изделий микромеханики характерно наличие отверстий и поверхностей различных конфигураций, требуется подбор материалов и геометрии волокон. Данные процессы сборки пучка и его вытягивания не являются тривиальными, но позволяют изготавливать детали с минимальными поперечными размерами отверстий до 0,2 мкм при высоте (глубине, длине) от 100 мкм 1 см.

Особо следует отметить возможность изготовления деталей с винтообразными поверхностями путем скручивания вытянутого пучка вокруг его оси. Такие поверхности, как известно, характерны для винтов, червячных и косозубых колес и принципиально не могут быть реализованы с помощью LlGA-технологии.

Волоконная технология может быть отнесена к групповой технологии, так как однотипные изделия тиражируются в данном случае в составе одного волоконного пучка.

 

14. Применение МЭМС

 

Биомедицинские микроактюаторы.

Микроактюаторы полезно использовать в биомедицине, когда биологическими объектами необходимо управлять на микроскопическом уровне. Кроме того, способность интегрировать много микроактюаторов также просто, как и один, даёт возможность производить сложные микросистемы, способные контролировать много параметров.

Хирургические микроинструменты.

Способности хируругического взаимодействия большинства микроактюаторов с биологическими тканями препятствует их неспособность выдерживать силы порядка 1 мН. Наиболее успешное использование микроактивации в хирургических инструментах - это применение высокомощных шаговых двигателей и резонансных микроструктур. МЭМС технология может использоваться для увеличения разнообразия возможностей хирургических инструментов (например, микронагреватели, микросенсоры, доставка и извлечение жидкости). Скальпель, управляемый пьезоэлектрическим микроактюатором - это инновационный пример использования МЭМС технологии в хирургических инструментах (рис. 13). Пьезоэлектрический шаговый двигатель позволяет точно управлять положением скальпеля. Используя способность измерять напряжение, испытываемое скальпелем во время резания, можно количественно определять и управлять фактической силой резанья. Ультразвуковой режущий инструмент, изготовленный с помощью объёмной микрообработки - это другой хороший пример использования МЭМС технологии для применения в хирургических инструментах.


Рис. 13


Пьезоэлектрический материал присоединяется к режущему инструменту для резонирования кончика устройства в ультразвуковой частоте. Только когда устройство приведено в действие оно будет быстро и легко резать даже жёсткие ткани (например застывший глазной хрусталик пациента с катарактой). Устройство, показанное на рис. 26, включает в себя встроенный микроканал через который можно при резании удалять жидкость и хирургические остатки.

Микрофильтры

Процесс используемый для производства обыкновенных фильтров, способных отбирать объекты микроуровня, неприменим из-за широкого статического разброса размеров объектов, которые могут проходить через фильтр. Микрообработка и МЭМС технология используется для создания фильтров, которые точно и однородно обработаны, и в которых значительно снижен статистический разброс проходящих объектов (рис. 14).


Рис. 14

Заключение

Технический прогресс движется вперед, и основное направление-мокроминиатюризация. Безусловно МЭМС технологии ждет большое будущее. Микромеханика позволит производить механические манипуляции с очень большой точностью на микроуровне, где обычная механика бесполезна.

Список литературы

 

1.           Microsystem Engineering (Prof. Dr.-Ing. Kasper), http://www.tu-harburg.de/mst/deutsch/lehre/mikrosystemtechnik/mst_eng.shtml

2.           Introduction to microelectromechanical systems, http://www-ee.uta.edu/Online/cbutler/MEMSWebpage/

3.           perst.isssph.kiae.ru

4.           Лацапнёв Е., Яшин К.Д., www.micromachine.narod.ru

5.           Журнал "Микросистемная техника", www.microsystems.ru

6.           Научно-исследовательская лаборатория микротехнологий и МЭМС СПбГУ, www.mems.ru

7.           www.memsnet.org

8.           www.trimmer.net

9.           www.microbot.ru

10.       www.nanonewsnet.com

11.       www.nanobot.ru

12.       Lyshevski S.E., “NANO- AND MICROELECTROMECHANICAL SYSTEMS - Fundamentals of Nano- and Microengineering”, CRC Press


 


Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.