Рефераты. Проектирование цифрового сглаживающего фильтра

Проектирование цифрового сглаживающего фильтра

 

 

 

 

 

 

 

 

 

 

 

 

 

Пояснительная записка

к курсовой работе по дисциплине "Цифровые устройства и микропроцессоры"




Студент Сумнительнов С. Н.

Группа 912 специальности 2007







2003

Введение


В наши дни, развитие цифровых устройств происходит гигантскими шагами. Очевидно и преимущество применения цифровой обработки сигнала наряду с аналоговым: улучшается помехозащищенность канала связи, бесконечные возможности кодирования информации. Применение микропроцессоров в радиотехнических системах существенно улучшает их массогабаритные, технические и экономические показатели, открывает широкие возможности реализации сложных алгоритмов цифровой обработки сигналов.

Микропроцессоры находят применение при решении широкого круга радиотехнических задач, таких как построение радиотехнических измерителей координат, сглаживающих и экстраполирующих фильтров, устройств вторичной обработки сигналов, специализированных вычислительных устройств бортовых навигационных комплексов, устройств кодирования и декодирования сигналов, весовой обработки пачечных сигналов в радиолокации, различного рода измерительных устройств и т.п. К таким устройствам относятся и цифровые фильтры, для которых стало возможным построение разнообразных частотных характеристик путём их аналитической задачи. При этом реализуемы и фильтры традиционных типов: нижних частот, верхних частот , полосовые и режекторные.

Цифровой фильтр относится к особому типу фильтров и призван убирать из сигнала импульсные проявления (пики и щелчки), сглаживая их. Импульс имеет широкий (в идеале бесконечный) частотный спектр, однако острота его формы определяется именно высокочастотными составляющими.

Фильтр должен быть выполнен на основе МП комплекта К1821 при использовании ЦАП 1108ПА1. МП комплект К1821 состоит из микросхем: К1821ВМ85 - микропроцессор, К1821РФ55 – ПЗУ (емкость – 2 Кб; два 8-разрядных порта ввода-вывода), К1821РУ55 – ОЗУ (емкость –256 байт; два 8-разрядных и один 6-разрядный порты ввода-вывода, встроенный счетчик-таймер).

Входной сигнал цифровой, преобразуется в аналоговый, ЦАП на микросхеме 1108ПА1А.

После прихода сигнала с периферийного устройства (ПУ) на порт ввода в дополнительном цифровом коде на ПУ выдаётся сигнал квитирования. Частота дискретизации FД = 1.2 кГц, разрядность входного сигнала 8. Обработка должна происходить в реальном масштабе времени.

Проектируемое устройство, его базовая конфигурация должны содержать минимальные аппаратные и программные средства, достаточные для выполнения поставленной выше задачи обработки.


Анализ и формализация задачи


Согласно техническому заданию разностное уравнение имеет следующий вид:



Тогда обобщённая структура, описывающая работу фильтра выглядит следующим образом:



где  - входные отчёты , - выходные отчёты, - задержка на ,  и  - коэффициенты.


=1.0 =-0.1 = 1.0 =0.64

=1.4 = 0.5 = 0.5


Коэффициенты  нужны, для того чтобы не было переполнения в восьми разрядах двоичного числа, с которым оперирует процессор. Расчёт  производится следующим образом:




Как видно, фильтр должен держать в памяти семь отсчётов одновременно и оперировать с ними, производя арифметические операции.

Произведём внесение коэффициентов  в скобки и получим следующие выражения:



Из формул видно что, для формирования выходного отчёта необходимо использовать текущее значение входного отчёта и его предыдущие значения. Для хранения входных, выходных, предыдущих значений отсчетов и промежуточных результатов вычисления необходимо выделить область памяти в ОЗУ.

После программы инициализации, т.е. после настройки работы, таймер начинает формировать импульсы следующие с частотой дискретизации, которые поступают на вывод STB A (PC2) порта С работающего в информационном режиме. В этом режиме через выводы PC0, PC1, PC2 происходит обмен управляющими сигналами для порта А .

По переднему фронту импульса на линии STB A формируется сигнал BF (PC1) "буфер полон" который используется в качестве сигнала квитирования. По заднему фронту импульса STB A формируется сигнал INTR (PC0) который является сигналом прерывания.

С приходом сигнала запроса прерывания RST 7,5 процессор переходит в режим обслуживания прерываний. Соответственно программе обслуживания прерываний 7,5 производится считывание данных из порта ввода А.Затем процессор начинает обрабатывать данные в соответствии с заданным алгоритмом. По окончанию вычислений процессор выдаёт данные в порт В. И процесс повторяется вновь.

Входные отсчеты поступают на шину данных микропроцессора в виде 8-разрядного параллельного дополнительного кода с частотой Fд=1.2 кГц, которая формируется таймером. На выходе устройства стоит ЦАП, преобразующий код в аналоговый сигнал-ток.

Микросхема умножающего ЦАП К572ПА1Б предназначена для преобразования 12-разрядного двоичного кода на цифровых входах в ток на аналоговом выходе пропорциональный значениям кода.

Анализируя выше приведённые уравнения видно что в нашем алгоритме должны использоваться операции умножения на константу и сложения. Где операция умножения реализуется путём сдвига значения переменной и суммирования.

Техническое задание требует чтобы на выходе устройства действовало напряжение (-3…+3) В. Следовательно, для преобразования тока на выходе ЦАП в напряжение (-3…+3) В необходимо дополнительное устройство. Таким устройством может послужить операционный усилитель (ОУ).

Обработка отсчетов производится программой, хранящейся в ПЗУ. Размер одного цикла программы должен быть таким, чтобы к моменту прихода следующего отсчета устройство закончило обработку предыдущего и находилось в состоянии готовности.


Общий алгоритм функционирования устройства и его описание

При включении питания фильтр должен быть настроен на соответствующую работу. Для этого используется программа инициализации. В ПЗУ должны быть заложены данные о конфигурации и синхронизации устройства. При включении питания на адресной шине микропроцессора устанавливается начальный адрес 0000, поэтому программу инициализации следует располагать, начиная с этого адреса.

Вторым этапом работы обобщённого алгоритма является основная программа- алгоритм фильтрации. Таким образом, обобщённый алгоритм функционирования устройства имеет вид:



Инициализация устройства включает в себя следующие этапы:

1.                 Установка маски прерываний

2.                 Настройка портов ввода-вывода

3.                 Организация стека

4.                 Настройка таймера

После программы инициализации, т.е. после настройки работы, таймер начинает формировать импульсы следующие с частотой дискретизации, которые поступают на вывод STB A (PC2) порта С работающего в информационном режиме. В этом режиме через выводы PC0, PC1, PC2 происходит обмен управляющими сигналами для порта А .

По переднему фронту импульса на линии STB A формируется сигнал BF (PC1) "буфер полон" который используется в качестве сигнала квитирования. По заднему фронту импульса STB A формируется сигнал INTR (PC0) который является сигналом прерывания. С приходом сигнала запроса прерывания RST 7,5 процессор переходит в режим обслуживания прерываний. Соответственно программе обслуживания прерываний 7,5 производится считывание данных из порта ввода А.Затем процессор начинает выполнение основной программы. Основная программа, содержащая в себе алгоритм фильтрации производит операции над выборками, поступающих с внешнего устройства на порт ввода, в соответствии с заданным алгоритмом. По окончанию вычислений процессор выдаёт данные в порт вывода В. И процесс повторяется вновь.


Режим прерываний

Методология построения системы прерываний ВМ85 подчинена архитектуре ВМ80, однако число возможных источников прерываний на аппаратном уровне увеличено с одного до пяти. Наряду с типовым векторным запросом INTR (INT для ВМ80) введены ещё четыре, имеющие фиксированные векторы прерываний. Это означает, что при появлении соответствующего запроса управление передаётся на ячейку с фиксированным адресом приведённом в таблице 1:

Таблица 1: Описание прерываний процессора ВМ85

Имя

Приоритет

Стартовый адрес

Вид сигнала

TRAP

1

24CH

Переход из 0 в 1, затем в 1

RST 7.5

2

3CH

Переход из 0 в 1

RST 7.5

3

34CH

1

RST 7.5

4

2CH

1

INTR

5

Вводится при подтверждении прерывания

1


Из таблицы видно, что стартовые адреса подпрограмм обслуживания прерываний находятся в области точек входа по команде RST n, n=0-7, но расположены посередине между ними. Это разъясняет ряд наименований , принятых для запросов RST n.5, n=5-7.

Все запросы, за исключением TRAP, могут быть запрещены или разрешены одновременно с помощью команд EI, DI, управляющих общим флагом разрешения прерываний IEN. Существует также возможность раздельного маскирования запросов типа RST независимо др. от друга, которое выполняется с помощью команды SIM. По команде SIM обеспечивается установка нового состояния маски в соответствии с содержимым аккумулятора. При выполнении этой команды содержимое аккумулятора интерпретируется следующим образом.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.