Рефераты. Проектирование цифрового режекторного фильтра

Проектирование цифрового режекторного фильтра

Содержание.

1. Постановка задачи (введение)

2. Формализация задачи

3. Разработка и описание общего алгоритма функционирования устройства

4. Обоснование аппаратной части устройства

5. Разработка и отладка программы на языке команд микропроцессора

6. Составление и описание электрической принципиальной схемы устройства

7. Расчёт быстродействия устройства

8. Расчёт АЧХ и ФЧХ устройства для заданных и реальных значений коэффициентов. Оценка устойчивости устройства

9. Заключение

10. Список использованных источников

1. Постановка задачи (введение):


В электронных системах одинаково широко используется обработка информации, представленной в аналоговой и цифровой формах. Это обусловлено тем, что первичная информация о различных физических величинах и процессах носит, как правило, аналоговый характер. Обработку же этой информации удобнее вести в цифровой форме в силу ниже описываемых достоинств цифровых устройств:

1. В цифровых устройствах импульсная и средняя мощности связаны соотношением , где - скважность импульса, - период следования импульсов, - длительность импульсов. Как видно при большой скважности можно получить существенное превышение мощности в импульсе над средним её значением. Этим обусловлены лучшие массогабаритные показатели цифровых устройств по сравнению с аналоговыми.

2. В цифровых устройствах усилительные приборы ( транзисторы ) используются в режиме ключа ( включено/выключено ), при котором мощность рассеиваемая в них минимальна, что приводит к увеличению КПД.

3. Свойства цифровых устройств в меньшей степени зависят от нестабильности параметров используемых элементов. Это объясняется меньшим тепловыделением, т.к. транзисторы работают в режиме ключа.

4. У цифровых устройств выше помехоустойчивость, чем у аналоговых электронных устройств. Это связано с тем, что при передаче импульсов сокращается время, в течении которого помеха может оказывать воздействие на передаваемый сигнал.

5. В цифровых устройствах используются однотипные элементы в каналах обработки, передачи и хранения информации. В связи с этим обстоятельством облегчается изготовление таких устройств средствами микроэлектроники, что в свою очередь обеспечивает надёжность, меньшие габариты, меньшую стоимость и т.п., по сравнению с аналоговыми электронными устройствами. Кроме того, цифровые устройства открывают большие возможности по реализации сложных алгоритмов математической обработки сигнала, что в аналоговых устройствах не всегда возможно.

Когда возникает потребность в цифровой обработке информации, возникает проблема преобразования аналогового сигнала в цифровой и обратно, цифрового в аналоговый. Эту задачу решают специальные устройства, которые носят название АЦП( аналого-цифровой преобразователь ) и ЦАП( цифро-аналоговый преобразователь). После того как сигнал представлен в цифровой форме, он подвергается обработке, в соответствии с некоторым алгоритмом, в программно управляемом устройстве - Микропроцессоре ( МП ).

Таким образом, использование микропроцессорных систем позволяет строить множество радиоэлектронных устройств, самой различной специализации, таких как: различные фильтры, навигационные устройства, измерительные устройства, устройства кодирования и декодирования, вычислительные системы и т.п.

В данном курсовом проекте построен цифровой режекторный фильтр, на основе набора К1821.

2.Анализ и формализация задачи

Согласно заданию на курсовой проект входные данные поступают на МП с периферийного устройства в виде дополнительного двоичного кода. В состав проектируемого цифрового фильтра входят МП-система, на основе набора К1821(К1821ВМ85, К1821РФ55, К1821РУ55), и ЦАП К572ПА1, которые вместе техническими требованиями по обеспечению их работы определяют функциональную схему фильтра приведенную на рис. 2.



Частота дискретизации FД = 4,25 кГц формируется аппаратным таймером РУ55, в котором частота переполнения FП в режиме 3 равна FД . При использовании в качестве входных импульсов таймера тактовых импульсов CLK МП-системы (FCLK МП = 1,5 МГц) исходное состояние таймера равно NТАЙМЕРА = FCLK МП/FД = 353(10) = 00 0001 0110 0001 (2) .При дополнении 14-разрядного двоичного кода NТАЙМЕРА двумя битами 11, задающими режим 3, получаем байты NСТ = 1100 0001(2) = C1(16), NМЛ =0110 0001(2) = 61(16), которые загружаются в таймер при инициализации фильтра.

Форма представления чисел (числовых значений отсчетов входного сигнала) – правильная дробь с фиксированной запятой: старший разряд – знаковый, запятая, остальные двоичные разряды – числовые. Таким образом, числовые значения входного сигнала изменяются в диапазоне от – 1 до + 1.

Ввод данных в МП целесообразно осуществлять по сигналу готовности АЦП, используя для этого прерывание МП оповещающим сигналом /BUSY. Согласно заданию на курсовой проект выбирается программное прерывание- RST 7. Для ввода данных определим порт РВ (РУ55) в режиме простого ввода без квитирования.

Необходимость хранения данных вытекает из вида заданного разностного уравнения. Уравнение использует входную выборку отсчетов (xn,xn-2) и выходную (yn, yn-2). Все выборки должны быть доступны для вычислений, следовательно, должны храниться в памяти МП-системы. Требуется также вычислять три текущих произведения: p1n = 0,117 xn-2; p2n = 1 xn-2; p3n = 0,0144 yn-2, которые также должны храниться в памяти. Следовательно, 12 ячеек ОЗУ (РУ55) при составлении программы необходимо определить для хранения данных в текущем цикле обработки входного сигнала (в текущем интервале дискретизации). После вычисления выходного отсчета yn, и записи его в ОЗУ, перед приемом нового входного отсчета необходимо сдвинуть отсчеты всех выборок в памяти: n-1-й отсчет на место n-2-го, n-й отсчет на место n-1-го. Это требуется для подготовки следующего цикла вычислений.

Переполнение разрядной сетки имеет место, если при вычислении разностного уравнения получен числовой результат, выходящий за пределы - 1, + 1 при принятом 8-разрядном формате представления данных. Для исключения переполнения разрядной сетки введем масштабирование (ослабление) входных отсчетов путем их умножения на коэффициент масштабирования kМ < 1, при котором вычисление разностного уравнения никогда не дает недопустимого результата.

Коэффициент kМ получим, предположив, что отсчеты в разностном уравнении принимают максимальные значения (- 1, + 1) и такие знаки, при которых слагаемые разностного уравнения складываются по модулю, то есть складываются по модулю коэффициенты.

Просуммировав по модулю коэффициенты в уравнении для вычисления yn, получим yn мах = 2,1314, что является недопустимым результатом. Отсюда заданный коэффициент масштабирования

 kМ = 1/ yn мах =1/ 2,1314 = 0,469.


Реальные значения коэффициентов разностного уравнения и коэффициента kМ отличаются от заданных вследствие ограничения длины разрядной сетки: А2 = 1,117(10) » 1,00011101(2) = 1,113(10);


 В2 = 0,0144(10) » 0,00000011(2) = 0,012(10);

 kМ = 0,469(10) » 0, 01111000 (2) = 0,4687(10).


По этой причине форма и параметры реальных частотных характеристик фильтра (АЧХ, ФЧХ) отличаются от расчетных. Могут также нарушаться условия устойчивости фильтра.

Алгоритм умножения на коэффициент (на константу без знака) целесообразно реализовать программным способом на основе алгоритма умножения вручную: арифметические сдвиги множимого вправо, соответствующие позициям единиц множителя, и накопление суммы частичных произведений. Разряды множимого, выходящие в результате сдвига за границу разрядной сетки, теряются.

Если затраты времени на вычисление произведений программным способом не допускают обработку сигнала в реальном времени, для вычисления произведений следует использовать БИС аппаратных перемножителей, которые вычисляют произведение за один машинный такт.

Согласование кода МП и кода ЦАП необходимо, так как АЦП преобразует в ток смещенный входной код (положительные числа). Для согласования вычисленный отсчет yn перед выводом на ЦАП суммируется с константой 1000 0000(2).

Вывод данных на ЦАП целесообразно осуществлять через порт РА (РФ55), так как этот порт имеет выходной буферный регистр, в котором отсчет yn хранится в течение всего интервала дискретизации (ЦАП не имеет входного буфера). Напряжение на выходе ЦАП на интервале дискретизации остается постоянным.

Опорное напряжение для ЦАП UОП в схеме четырехквадрантного умножения определяет диапазон изменения напряжения на выходе фильтра UВЫХ. Задание на КП требует обеспечить изменение выходного напряжения в диапазоне – 1… + 1 В. Поэтому примем UОП = - 1 В.

Исходное состояние аппаратной части и программы фильтра устанавливается при включении питания по сигналу аппаратного узла сброса (схемы сброса). При этом:

· программный счетчик (ВМ85) принимает нулевое значение;

· сбрасывается флаг разрешения прерываний (ВМ85);

· все линии портов РА и РВ (РФ55) настраиваются на ввод;

· порты РА, РВ, РС (РУ55) настраиваются на ввод в режиме простого обмена данными;

· таймер (РУ55) останавливается;

· содержимое ячеек ОЗУ и буферных регистров портов (РУ55) сохраняется.

Из этого следует, что переходу фильтра в рабочий режим должна предшествовать его настройка (инициализация) на обеспечение принятого принципа функционирования, выбранных режимов работы узлов, заданных рабочих характеристик.


3. Разработка общего алгоритма функционирования фильтра:


Общий алгоритм функционирования фильтра строится на основе выводов и определений, сделанных при анализе задачи, и включает в себя все функции устройства, реализуемые аппаратно и реализуемые программно. Он содержит также все сигналы и сообщения, необходимые для взаимосвязи аппаратно-реализуемых и программно-реализуемых операций.

 


Работа фильтра начинается с подачи питания на схему сброса. Импульс, сформированный схемой сброса (аппаратный узел), обнуляет счетчик команд МП и инициирует формирование импульса сброса RESET для установки МП-системы в исходное состояние.

Таким образом запускается программа инициализации МП-системы, которая должна начинаться с нулевого адреса. В указатель стека SP записывается начальный адрес, с которого начинается стек; порт РВ (РУ55) настраивается на ввод; порт РА (РУ55) – на вывод в режиме обмена с квитированием; таймер настраивается на период переполнения, равный ТД в режиме 3; таймер запускается для формирования непрерывной последо–вательности импульсов с частотой дискретизации FД, которые используются далее для взятия отсчетов входного сигнала . Программа инициализации завершается операцией останова МП.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.