Рефераты. Процессоры. История развития. Структура. Архитектура p> Возможность рестарта инструкции ввода-вывода является расширением режима SMM. Ее используют, например, когда прикладная программа (или системный драйвер) пытается обратиться операцией ввода-вывода к периферийному устройству, находящемуся в “спящем” режиме. Системная логика должна в этом случае выработать сигнал SMI# раньше сигнала RDY#, завершающего шинный цикл рестартуемой инструкции ввода-вывода. Обработчик
SMI “разбудит” устройство, после чего операции ввода-вывода рестартует, и прикладное ПО (или драйвер) “не заметит”, что устройство пребывало в спячке. Таким образом, управление потреблением может быть организованно на уровне BIOS способом, совершенно “прозрачным” для программного обеспечения
(в том числе и ОС). Прозрачность SMM обеспечивается следующими свойствами режима:

. возможность только аппаратно входа в SMM,

. исполнением кода SMM в отдельном адресном пространстве,

. полным сохранением состояния прерванной программы в области SMRAM,

. запретом обычных прерываний,

. восстановлением состояния прерванной задачи по выходу из режима SMM.

Память SMRAM должна быть физически или логически выделенной областью размером от 32 Кб (минимальные потребности SMM) до 4 Гб. SMRAM располагается, начиная с адреса SMIBASE (по умолчанию 30000h), и распределяется относительно адреса SMIBASE следующим образом:

. FE00h-FFFFh (3FE00h-3FFFFh) – область сохранения контекста

(распределяется, начиная со старших адресов по направлению к младшим). По прерыванию SMI сохраняются практически все регистры процессора, включая программно невидимые регистры CR1, CR2 и CR4, а также скрытые регистры дескрипторов для CS, DS, ES, FS, GS и SS.

Автоматическое сохранение не производится для регистров DR5-DR0, TR7-

TR3 и регистров FPU;

. 8000h (38000h) – точка входа в обработчик (SMI Handler);

. 0-7FFFh (30000h-37fffh) – свободная область.

2.1.6. Расширение ММХ
Расширение ММХ ориентированно на мультимедийное, 2D и 3D-графическое и коммуникационное применение. Основная идея расширения MMX заключается в одновременной обработки нескольких элементов данных за одну инструкцию – так называемая технология SIMD (single Instruction – Multiple Data).
Расширение ММХ использует новые типы упакованных 64-битных данных:

. упакованные байты (Packed byte) – восемь байт;

. упакованные слова (Packed word) – четыре слова;

. упакованные двойные слова (Packed doubleword) – два двойных слова;

. учетверенное слово (Quadword) – одно слово.

Эти типы данных могут специальным образом обрабатываться в регистрах
ММХ0-ММХ7, представляющих собой младшие биты стека 80-битных регистров FPU.
Как и регистры FPU, эти регистры не могут использоваться для адресации памяти, совпадение регистров FPU и ММХ накладывает ограничения на чередование кодов FPU и ММХ – забота об их независимости лежит на программисте приложений ММХ.

Еще одна особенность технологии ММХ – поддержка арифметики с насыщением
(saturating arithmetic). Ее отличие от обычной арифметики с циклическим переполнением (wraparound mode) заключается в том, что при возникновении переполнения в результате фиксируется максимальное возможное значение для используемого типа данных, а перенос игнорируется. В случае антипереполнения в результате фиксируется минимальное возможно значение.
Граничные значения определяются типом (знаковые или беззнаковые) и разрядностью переменных. Такой режим вычислений актуален, например, для вычисления цветов в графике.

В систему команд введено 57 дополнительных инструкций для одновременной обработки нескольких единиц данных. Одновременно обрабатываемое 64-битное слово может содержать как одну единицу обработки, так и 8 однобайтных, 4 двухбайтных или 2 четырехбайтных операнда. Новые инструкции включают следующие группы:

. арифметические (Arithmetic Instructions), включающие сложение и вычитание в разных режимах, умножение и комбинацию умножения и сложения;

. сравнение (Comparison Instructions) элементов данных на равенство или по величине;

. преобразование форматов (Conversion Instructions);

. логические (Logical Instructions) – И, И-НЕ, ИЛИ и Исключающее ИЛИ, выполняемые над 64-битными операндами;

. сдвиги (Shift Instructions) – логические и арифметические;

. пересылки данных (Data Transfer Instructions) между регистрами ММХ и целочисленными регистрами или памятью;

. очистка ММХ (Empty MMX State) – установка признаков пустых регистров в слове тегов.

Инструкции ММХ не влияют на флаги условий.

Регистры ММХ, в отличии от регистров FPU, адресуются физически а не относительно значения TOS. Более того, любая инструкция ММХ обнуляет поле
TOS регистра состояния FPU. В слове тегов свободному регистру соответствует комбинация “11”, остальные комбинации указывают только на занятость регистра. После каждой операции ММХ биты тегов используемого регистра назначения обнуляются. Неиспользуемые в ММХ биты [79:64] регистров FPU заполняются единицами, так что ошибочное использование данных ММХ инструкций FPU приведет к исключению.

Инструкции ММХ не порождают новых исключений. Исключения при их выполнении могут возникать только при нарушении границ при обращениях к памяти (данные и инструкции). Однако если предшествующая инструкция FPU породила условие исключения, то оно произойдет при выполнении инструкции
ММХ. После его обработки инструкция ММХ может быть благополучна исполнена.

Инструкции ММХ доступны из любого режима процессора. При переключении задач необходимо следить за корректностью сохранения контекста, как и при работе с FPU.

Часто чередование годов FPU и ММХ может снизить производительность за счет необходимости сохранения и восстановления весьма объемного контекста
FPU.

2.1.7. Внутренний кэш
Внутренне кэширование обращений к памяти применяется в процессорах, начиная с 486-го. С кэшированием связаны новые функции процессоров, биты регистров и внешние сигналы.

Процессоры 486 и Pentium имеют внутренний кэш первого уровня, в Pentium
Pro и Pentium II имеется и вторичный кэш. Процессоры могут иметь как единый кэш инструкций и данных, так и общий. Выделенный кэш инструкций обычно используется только для чтения. Для внутреннего кэша обычно используется наборно-ассоциативная архитектура.

Строки в кэш-памяти выделяются только при чтении, политика записи первых процессоров 486 – только Write Through (сквозная запись) – полностью программно-прозрачная. Более поздние модификации 486-го и все старшие процессоры позволяют переключаться на политику Write Back (обратная запись).

Работу кэша рассмотрим на примере четырехканального наборно- ассоциативного кэша процессора 486, его физическая структура приведена на рис. 3.1.7. Кэш является несекторированным – каждый бит достоверности
(Valid bit) относится к целой строке, так что стока не может являться
“частично достоверной”.

Работу внутренней кэш-памяти характеризуют следующие процессы: обслуживание запросов процессора на обращение к памяти, выделение и замещение строк для кэширования областей физической памяти, обеспечение согласованности данных внутреннего кэша и оперативной памяти, управление кэшированием.

Любой внутренний запрос процессора на обращение к памяти направляется на внутренний кэш. Теги четырех строк набора, который обслуживает данный адрес, сравниваются со старшими битами запрошенного физического адреса.
Если адресуемая область представлена в строке кэш-памяти (случая попадания
–cache hit), запрос на чтение обслуживается только кэш-памятью, не выходя на внешнюю шину. Запрос на запись модифицирует данную строку, и в зависимости от политики записи либо сразу выходит на внешнюю шину (при сквозной записи), либо несколько позже (при использовании алгоритма обратной записи).

Рис 3.1.7. Структура первичного кэша процессора 486

В случае промаха (Cache Miss) запрос на запись направляется только на внешнюю шину, а запрос на чтение обслуживается сложнее. Если этот зарос относится к кэшируемой области памяти, выполняется цикл заполнения целой строки кэша – все 16 байт (32 для Pentium) читаются из оперативной памяти и помещаются в одну из строк кэша, обслуживающего данный адрес. Если затребованные данные не укладываются в одной строке, заполняется и соседняя. Заполнение строки процессор старается выполнить самым быстрым способом – пакетным циклом с 32-битными передачами (64-битными для Pentium и старше).

Внутренний запрос процессора на данные удовлетворяется сразу, как только затребованные данные считываются из ОЗУ – заполнение строки до конца может происходить параллельно с обработкой полученных данных. Если в наборе, который обслуживает данный адрес памяти, имеется свободная строка
(с нулевым битом достоверности), заполнена будет она и для нее установится бит достоверности. Если свободных строк в наборе нет, будет замещена строка, к которой дольше всех не было обращений. Выбор строки для замещения выполняется на основе анализа бит LRU (Least Recently Used) по алгоритму
“псевдо-LRU”. Эти биты (по три на каждый из наборов) модифицируются при каждом обращении к строке данного набора (кэш-попадании или замещении).

Таким образом, выделение и замещение строк выполнятся только кэш- промахов чтения, при промахах записи заполнение строк не производится. Если затребованная область памяти присутствует в строке внутреннего кэша, то он обслужит этот запрос. Управлять кэшированием можно только на этапе заполнения строк; кроме того, существует возможность их аннулирования – объявления недостоверными и очистка всей кэш-памяти.

Очистка внутренней кэш-памяти при сквозной записи (обнуление бит достоверности всех строк) осуществляется внешним сигналом FLUSH# за один такт системной шины (и, конечно же, по сигналу RESET). Кроме того, имеются инструкции аннулирования INVD и WBINVD. Инструкция INVD аннулирует строки внутреннего кэша без выгрузки модифицированных строк, поэтому ее неосторожное использование при включенной политике обратной записи может привести к нарушению целостности данных в иерархической памяти. Инструкция
WBINVD предварительно выгружает модифицированные строки в основную память
(при сквозной записи ее действие совпадает с INVD). При обратной записи очистка кэша подразумевает и выгрузку всех модифицированных строк в основную память. Для этого, естественно, может потребоваться и значительное число тактов системной шины, необходимых для проведения всех операций записи.

Аннулирование строк выполняется внешними схемами – оно необходимо в системах, у которых в оперативную память запись может производить не только один процессор, а и другие контроллеры шины – процессор или периферийные контроллеры. В этом случае требуются специальные средства для поддержания согласованности данных во всех ступенях памяти – в первичной и вторичной кэш-памяти и динамического ОЗУ. Если внешний (по отношению к рассматриваемому процессору) контроллер выполняет запись в память, процессору должен быть подан сигнал AHOLD. По этому сигналу процессор немедленно отдает управление шиной адреса A[31:4], на которой внешним контроллером устанавливается адрес памяти, сопровождаемый стробом EADS#.
Если адресованная память присутствует в первичном кэше, процессор аннулирует строку – сбрасывает бит достоверности этой строки (она освобождается). Аннулирование строки процессор выполняет в любом состоянии.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.