Рефераты. Применение и принципы радиоуправления

Метод накрытия цели характерен и для систем наведения по радиолучу. Использующаяся в этих системах радиолокационная станция следит за целью, то есть обеспечивает перемещение радиолуча вслед за перемещением цели. Как вы уже знаете после ознакомления с историей радиолокации, в первых РЛС сопровождения использовалось коническое сканирование луча. Радиолуч РЛС сопровождения представляет собой как бы пространственную воронку, ось которой совпадает с равносигнальным направлением. На оси “воронки” должна располагаться цель. На это же направление должен вывести себя и снаряд. На снаряде находится приемник, который принимает сигналы радиолокатора и определяет отклонение снаряда от равносигнального направления. По измеренному отклонению вырабатываются команды для управления снарядом.


Ясно, что, чем уже диаграмма направленности РЛС, тем точнее определение местоположения цели и снаряда, то есть точнее наведение. Но в узкий луч очень трудно попасть снаряду после старта. Поэтому РЛС сопровождения формирует два луча: узкий – для наведения снаряда на цель и широкий – для ввода снаряда в луч после старта. Переключение приемника снаряда на работу с широкого луча на узкий производится автоматически.

Но наведение по методу накрытия цели является далеко не лучшим. Посмотрим на построенную траекторию снаряда. Она криволинейная, и путь, пройденный снарядом, длиннее расстояния между точкой старта снаряда и точкой встречи снаряда с целью. Почему так получилось? Потому что снаряд все время летит прямо на цель, а не в упреждающую точку, т.е. туда, где цель будет через некоторое время. Лучше всего было бы, если бы снаряд направлялся не на цель, а в точку встречи снаряда с целью. Это была бы самая экономичная траектория.

Такой самой экономичной траектории соответствует следующий метод наведения – метод параллельного сближения. Построим траекторию снаряда для этого метода при тех же исходных условиях, что и при методе накрытия цели. Правило построения такое: линия “цель – снаряд” во время всего движения остается параллельной самой себе.


 










Процедура построения такая же, как и для метода накрытия цели, только линия “цель-снаряд” от шага к шагу строится по-другому. Сравните траектории снаряда для рассмотренных методов. Мало того, что траектория снаряда стала короче (при данных условиях она прямолинейна), но и встреча снаряда с целью произошла раньше.

Конечно, для реализации метода параллельного сближения недостаточно знания только угловых координат цели и снаряда. Для расчета упрежденной точки встречи нужно также знать дальности до цели и снаряда и их скорости. А в систему телеуправления необходимо ввести вычислитель для выработки команды управления.



Радиолокаторы слежения за целью и слежения за снарядом автоматически определяют координаты цели и снаряда: угловые координаты, дальность и их производные. Эти данные поступают в вычислитель, который вычисляет координаты упреждающей точки, рассчитывает траекторию снаряда, определяет отклонение снаряда от расчетной траектории, т.е. ошибку наведения и формирует в соответствии с этой ошибкой команды, передаваемые по радиолинии управления на снаряд.

3.                 Самонаведение


Как правило, системы телеуправления не обеспечивают точности, необходимой для уничтожения цели (за исключением телеуправления через ракету). Причина в том, что с увеличением дальности увеличиваются ошибки измерения координат цели и снаряда, а это приводит к увеличению ошибок наведения. При самонаведении измеритель координат цели находится на снаряде. По мере приближения к цели ошибки измерения координат (особенно угловых!) уменьшаются, и, следовательно, ошибка наведения тоже уменьшается.

Если в системах телеуправления использовались только два типа измерителей координат: оптический (в первых попытках) и радиолокационный, то измерители координат (их также называют координаторами) в системах самонаведения более разнообразны. На рисунке на следующей странице показаны некоторые типы координаторов.

Тепловой, оптический и акустический координаторы улавливают излучение самой цели, и снаряд наводится на источник этого излучения. В радиолокационных координаторах наведение производится по радиосигналу, который излучается целью. В зависимости от того, как образуется этот радиосигнал, координаторы делятся на активные, полуактивные и пассивные. Активный координатор представляет собой РЛС слежения, в которую входит передатчик, облучающий цель, приемник, принимающий сигнал, отраженный от цели и устройство измерения координат. Полуактивный координатор содержит только приемник и устройство измерения координат, а передатчик, облучающий цель, находится в другом месте. Для пассивного координатора вообще не нужен передатчик, и координатор работает по радиоизлучению цели (работающие радиопередатчики различных радиотехнических систем и др.). Использование пассивного и полуактивного координаторов затрудняет обнаружение снаряда по его радиоизлучению


Активными и полуактивными могут быть не только радиолокационные координаторы, но и другие, например, оптические с лазерной подсветкой.



Если координатор жестко закреплен по оси снаряда, то наведение осуществляется по методу погони. Ниже построена траектория снаряда при принятых ранее условиях. Точки, определяющие положение снаряда через временные интервалы Dt, строятся как пересечение дуги радиуса VCDt с линией, соединяющей снаряд и цель.

 












Эту траекторию называют кривой погони, а также “собачьей кривой”, так как именно по такой траектории собака настигает свою жертву.

Недостаток такого метода наведения – большая крутизна траектории снаряда при подлете к цели. И если минимально возможный радиус разворота снаряда окажется больше радиуса окружности, описывающей траекторию на участке максимальной крутизны, то снаряд сойдет с расчетной траектории и пролетит мимо цели (пунктирная кривая на рисунке). Можно ли спрямить траекторию? Конечно можно, если направлять снаряд не на цель, а в упреждающую точку. Например, можно использовать наведение с фиксированным углом упреждения. Суть его заключается в том, что направление движения снаряда отличается от направления на цель на фиксированный угол a. Траектория снаряда при таком методе наведения построена ниже












Линия, на которой будет находиться снаряд спустя время Δt после старта, повернута относительно линии С0Ц0 на угол α. Дугой радиуса VсΔt делаем засечку на этой линии и получаем точку С1. Из точки С1 проводится линия, повернутая относительно линии С1Ц1 на угол α и на ней строится точка С2 и т. д.

Сравнивая построенную траекторию снаряда с траекторией, построенной ранее для метода параллельного сближения, замечаем, что линия снаряд – цель при наведении с фиксированным углом упреждения тоже перемещается, но не параллельно самой себе, а с некоторым изменением наклона. Причем это изменение наклона будет тем меньше, чем больше угол упреждения. Заметим также, что с увеличением угла упреждения траектория снаряда будет все более спрямляться. А может ли траектория стать прямолинейной? Да, если взять a = arctg (VЦ /VC). Траектория снаряда при наведении с таким углом упреждения совпадает с траекторией снаряда для метода параллельного сближения. Угол упреждения больше этого значения брать нельзя, так как снаряд попадет в упреждающую точку раньше, чем туда прилетит цель.

Чтобы реализовать наведение с упреждением в системах самонаведения, нужно координатор цели делать подвижным относительно корпуса снаряда. Такой координатор все время следит за целью независимо от ориентации оси снаряда. Кроме того, усложняется и сам координатор, так как он должен определять не только угловые координаты цели, но и дальность и их производные.

Первые управляемые снаряды снабжались, как правило, одной из рассмотренных выше систем управления. Современное управляемое оружие должно обладать большой дальностью действия и высокой, близкой к единице, вероятностью поражения цели. Поэтому используется несколько систем управления, которые включаются последовательно. Сначала с помощью систем автономного управления или телеуправления управляемый объект выводится в район цели, и обеспечивается захват цели системой самонаведения. Затем система самонаведения подводит управляемый объект к цели на расстояние, достаточное для ее поражения.


4.                 Радиовзрыватель


При самом тщательном выполнении систем управления снарядами трудно рассчитывать на стопроцентную вероятность их прямого попадания в цели, особенно воздушные, обладающие, как правило, большой маневренностью и скоростью полета. В то же время нельзя допустить, чтобы дорогостоящий управляемый снаряд прошел мимо цели, не поразив ее, и был потерян. Поэтому все снаряды обеспечиваются неконтактными взрывателями, срабатывающими при приближении снаряда к цели.

Первыми начали работать над созданием радиовзрывателей для снарядов в США еще за 10 лет до Второй мировой войны. Радиовзрыватель, выдерживающий ускорение до 2000g был разработан в США перед Второй мировой войной. Он содержал миниатюрный передатчик, который излучал хорошо направленный пучок ВЧ энергии на цель и детонировал при получении сильного отражения от цели. Такие взрыватели использовались в артиллерийских снарядах, минах, ракетах и бомбах.

 В отличие от аппаратуры теле- или самонаведения неконтактные взрыватели не вырабатывают команд управления рулями, а только дают команду на подрыв боевого заряда в зависимости от степени приближения снаряда к цели

Действие неконтактных взрывателей так же, как и аппаратуры самонаведения, основано на использовании электромагнитных и других полей (акустического, теплового и др.). Ввиду небольших расстояний, на которых действуют взрыватели, возможно применение для них и статических полей: электрического и магнитного.

Рассмотрим сначала принципы, на которых может быть построен неконтактный взрыватель. Для выработки команды на подрыв цели может быть использована информация о расстоянии от снаряда до цели, скорости сближения цели и снаряда Vсбл и интенсивности поля, формируемого целью (собственного или отраженного).


Траектория снаряда

 
 














Из приведенного выше рисунка видно, что при движении снаряда относительно цели расстояние от снаряда до цели будет сначала уменьшаться, а затем после достижения минимального значения увеличиваться.

Радиовзрыватели, использующие информацию о дальности, называются дальномерными. Дальномерные радиовзрыватели срабатывают или по минимуму измеренной дальности, или при достижении определенного значения дальности, когда вероятность уничтожения цели близка к единице. В Германии во время второй моровой войны был разработан такой радиовзрыватель “Марабу”, в котором использовался частотный метод дальнометрии, то есть излучался частотно-модулированный сигнал.

Рассмотрим теперь, как изменяется скорость сближения снаряда с целью при движении снаряда мимо цели.

 














 


Скорость сближения Vсбл представляет собой проекцию вектора скорости снаряда Vснар на линию “снаряд – цель”. При приближении снаряда к цели скорость сближения будет уменьшаться до нуля при максимальном сближении, затем становится отрицательной (снаряд удаляется от цели) и увеличивающейся по модулю. Частота Доплера зависит только от величины скорости, поэтому она уменьшается до нуля при приближении к цели и возрастает при удалении от нее.

Информация о скорости используется в радиовзрывателях, использующих эффект Доплера. Передатчик, расположенный на снаряде, излучает непрерывный сигнал. Отраженный от цели сигнал отличается по частоте от излученного на величину доплеровского сдвига частоты. В приемнике выделяются колебания доплеровской частоты. Радиовзрыватель срабатывает по нулю доплеровской частоты. Подобными радиовзрывателями в годы второй мировой войны оборудовались зенитные и авиационные снаряды (например радиовзрыватель “Какаду”, разработанный в Германии).

В основу срабатывания радиовзрывателя может быть положена и энергия поля, излучаемого целью.

Энергия

 
 














Независимо от физической природы поля (электромагнитного, теплового, акустического) максимальному сближению снаряда и цели соответствует максимум энергии этого поля.

Радиовзрыватели, срабатывающие по максимуму излучаемой целью энергии, должны иметь специфическую диаграмму направленности в виде диска, перпендикулярного к оси снаряда. В Германии во время войны был разработан радиовзрыватель “Трихтэр”, срабатывавший по максимуму отраженного от цели радиосигнала.

Надо отдать должное немецким разработчикам за широту подхода к построению радиовзрывателей. Использовались: электрический заряд цели (самолета); изменение емкости (проводник в электрическом поле); изменение индуктивности (железо в магнитном поле); отражение модулированного света; изменение интенсивности звука от двигателей самолета. Многое из того, что было заложено ими, использовалось в поздних разработках во многих странах мира.

Заключение


Радиоуправление применяется при построении систем автоматики, в авиа- и ракетостроении, робототехнике. В современное время получило развитие направление управления бытовой техникой и приборами ("умный дом").

Список литературы


1. Коновалов Г.Ф. Радиоавтоматика.

2. Основы радиоуправления, под ред. В.А. Вейцеля, В.Н. Типугина.-М.: Сов. радио, 1973.

3. Мановцев А.П., Основы теории радиотелеметрии, М., 1973.

 


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.