Рефераты. Приемник диспетчерской радиостанции

Таким образом, для выполнения поставленной задачи потребуются микросхемы тракта радиочастоты, тракта первой промежуточной частоты, тракта второй промежуточной частоты, а также микросхема УНЧ, служащая для усиления звукового сигнала до необходимой величины.

В соответствии с техническим заданием можно сформулировать общие требования, которым должны удовлетворять все используемые в устройстве микросхемы: их корпуса должны быть приспособлены для поверхностного монтажа, а сами микросхемы должны нормально функционировать в диапазоне температур -30..+60 C.

Частные же требования будут относиться к рабочим частотам, необходимому усилению, работе с заданным динамическим диапазоном сигнала. Кроме того, тракт радиочастоты должен обладать определёнными шумовыми свойствами (указать), обеспечивающими заданную чувствительность, а детектор должен работать с заданной полосой пропускания.

В соответствии с вышеизложенными условиями выберу следующие микросхемы:

1. MC13142D

Данная микросхема включает в себя усилитесь радиочастоты (УРЧ), первый смеситель (СМ1) и генератор управляемый напряжением (Г1).

Основные параметры:

- диапазон рабочих частот0..1,8 ГГц

- диапазон частот ГУН0..1,8 ГГц

- диапазон ПЧ0..1,8 ГГц

- напряжение питания2,7..6,5 В

- входное сопротивление УРЧ50 Ом

- выходное сопротивление смесителя800 Ом

- усиление УРЧ по мощности17 дБ

- точка компрессии 1 дБ –15 дБм

- коэффициент шума УРЧ1,8 дБ

- коэффициент шума смесителя12 дБ

- диапазон рабочих температур–

2. ADF4110

На этой микросхеме реализуем синтезатор сетки частот.

Основные параметры:

- максимальная частота550 МГц

- напряжение питания2,7..5,5 В

- программируемый ДПКД 8/9, 16/17, 32/33, 64/65

- диапазон рабочих температур

3. RF3330

Используем данную микросхему как усилитель первой промежуточной частоты (УПЧ1).

Основные параметры:

- напряжение питания

- полоса пропускания 150 МГц

- коэффициент усиления8..34 дБ

- точка компрессии 1 дБ –13 дБм

- входное сопротивление2000 Ом

- выходное сопротивление10 Ом

- диапазон рабочих температур

4. MC13150FTA

Микросхема супергетеродинного приемника с одним преобразованием частоты. Включает в себя второй смеситель (СМ2), усилитель второй промежуточной частоты (УПЧ2), второй гетеродин (Г2), усилитель-ограничитель (УО) и частотный детектор (ЧД).

Основные параметры:

- напряжение питания

- диапазон рабочих частот10..500 МГц

- чувствительность 12 дБ по SINAD–100 дБм

- точка компрессии 1 дБ –11 дБм

- усиление УПЧ42 дБ

- усиление УО96 дБ

- регулируемая рабочая полоса детектора 0..70 кГц

- диапазон рабочих температур

5. NJM213V

На данной микросхеме реализуем усилитель низкой частоты (УНЧ).

Основные параметры:

- напряжение питания

- коэффициент усиления 83 дБ

- диапазон регулировки коэффициента усиления 0..43 дБ

- максимальный выходной ток 0,25 А

- выходная мощность (Vсс = 6 B, RL = 32 Ом) 250 мВт

- диапазон рабочих температур

Для реализации полноценного устройства вместе с рассмотренными микросхемами предполагается использовать следующие фильтры:

1. ФП3П7-509-308

Фильтр на ПАВ. Служит фильтром радиочастоты (ФРЧ).


Основные параметры:

- центральная частота

- ширина полосы пропускания по уровню -3 дБ 10 МГц

- ширина полосы пропускания по уровню -35 дБ 40 МГц

- гарантированное затухание -45 дБ

- вносимое затухание в полосе пропускания 3,5 дБ

2. ФП2П4-590

Монолитный кварцевый фильтр 4-го порядка. Служит фильтром первой промежуточной частоты (ФПЧ1).

Основные параметры:

- центральная частота

- ширина полосы пропускания по уровню -3 дБ24 кГц

- ширина полосы пропускания по уровню -60 дБ120 кГц

- гарантируемое затухание 65 дБ

- потери 2 дБ

- неравномерность 1,5 дБ

- диапазон рабочих температур

3. CFUKF455KC4X-R0 (2 шт.)

Керамический фильтр. Используется в качестве фильтра второй промежуточной частоты (ФПЧ2).


Основные параметры:

- центральная частота

- полоса пропускания -6 дБ

- затухание при расстройке -40 дБ

- минимальное гарантированное

затухание-25 дБ

- максимальные потери -6 дБ

- неравномерность 1 дБ

- диапазон рабочих температур


Структурная схема приемника, реализованного на ИМС изображена на рис.5.





Оценка реальной чувствительности приемника на ИМС


Поскольку влияние на чувствительность всего приемника оказывают лишь его первые каскады, и, так как ранее были предъявлены требования к коэффициенту шума приемника, будем считать, что если шум первых каскадов не превысит рассчитанного значения, то приемник будет обладать заявленной в задании чувствительностью.

Примем шумы контура входной цепи равными нулю и рассчитаем коэффициент шума каскадов от УРЧ до 1-го смесителя включительно.

  

  



, поэтому чувствительность удовлетворяет заданному требованию.


Избирательные свойства приемника


Поскольку УРЧ был выбран в интегральном исполнении, то, учитывая изменившееся входное сопротивление первого усилительного каскада, необходимо пересмотреть входную цепь. Входное сопротивление интегрированного МШУ равно 50 Ом и, соответственно, равно волновому сопротивлению антенно-фидерного тракта. В этом случае согласование антенны с УРЧ посредством двойной автотрансформаторной связи не требуется, достаточно использовать простой параллельный колебательный контур. Выбор L и C, осуществленный при расчете входной цепи, остается в силе. Помимо этого не меняется и избирательность, меняется лишь требование к добротности контура .

Общая избирательность по зеркальному каналу складывается из соответствующих избирательностей входной цепи и ФРЧ и составляет  при заданной избирательности 60дБ.

Селективность по второму зеркальному каналу, реализуемая в тракте ПЧ1 кварцевым фильтром ФП2П4-590 при заданной 60 дБ.

Избирательность по соседнему каналу, отстоящему от основного на 50кГц, складывается из избирательностей ФПЧ1 и двух керамических фильтров ПЧ2. , что значительно превышает требование в 60 дБ.


Работа приемника при работе в динамическом диапазоне


Пересчитаю заданную чувствительность на входе микросхемы в единицы мощности.


 или


Для нормальной работы приемника сигнал на входе микросхемы MC13150FTA должен быть выше чувствительности, т.е. выше -100 дБм. Следовательно, каскады, предшествующие данной микросхеме, должны обеспечить суммарное усиление, большее . Рассчитаем это суммарное усиление, приняв потери, вносимые входной цепью, равными нулю.



Результат показывает, что есть некоторый запас по чувствительности, и если при максимальном входном сигнале возникнет перегрузка каскадов, рассчитанное суммарное усиление можно уменьшить, изменив коэффициент усиления УПЧ с АРУ.

Рассмотрим работу приемника в режиме максимального входного сигнала, то есть проверим, не перегружаются ли каскады приемника при этом сигнале. При этом в качестве критерия перегрузки каскада возьмем сигнал в точке компрессии 1 дБ.

Поскольку заданный динамический диапазон равен 70 дБ, то на входе приемника, т.е. на входе УРЧ, имеем сигнал . В этом случае сигнал на входе MC13150FTA достигает величины , что превышает .

Уменьшим коэффициент усиления регулируемого УПЧ1 на 15 дБ, тогда он составит величину , а суммарный КУ первых каскадов до ИМС MC13150FTA составит , что больше порогового уровня по чувствительности. В то же время сигнал на входе MC13150FTA изменится до величины , что уже соответствует требованию.

Так как значение -20,5 дБм меньше любого из значений, то перегрузки каскадов до МС MC13150FTA тем более не происходит, соответственно, останавливаемся на усилении .

При выполнении условий линейности всех усилительных и преобразовательных узлов приемного тракта нелинейные искажения можно считать малыми и удовлетворяющими требованию .



Расчет и выбор элементов принципиальной схемы


Выберу напряжение источника питания , поскольку все из выбранных микросхем способны работать при таком напряжении.

Поскольку практическая схема, приведенная в документации разработчиком микросхемы MC13142D, рассчитана на частоту 975,5 МГц, то реактивности контура ГУН’а, а также другие реактивности, через которые протекает ВЧ ток, должны быть пересчитаны на частоту 375,5 МГц (330+45,5) при условии равенства реактивных сопротивлений. Это элементы C1, C4, C5, C8, L2, С9.



Аналогично , , , , , .

Конденсаторы С10, С11 синтезатора частоты выбираются аналогично, но первоначальная . , .

Цепочка R1, C2 на выходе синтезатора выбирается из условия качественной фильтрации постоянного напряжения, поэтому выберем , .

Выходное сопротивление смесителя 1 – 800 Ом, но он нагружен на линию 50 Ом, следовательно, требуется согласовать линию по максимально передаваемой мощности. Так как коэффициент полоса пропускания относительно узка в этом месте тракта, то произведем согласование посредством согласующего Г-звена (на схеме С13 и L3). Реактивные сопротивления элементов в этом случае определяются по формулам  и , где  и , соответственно, выходное сопротивление предыдущего и входное сопротивление следующего каскадов. , .

Для управления усилением УПС RF3330 вводим переменный резистор R5 номиналом 1кОм.

Необходимо пересчитать параметры элементов контура второго гетеродина на частоту . В документации параметры приведены на частоту . Коэффициент пересчета .

, , .

Резистор R9=560кОм, подключенный к детектору микросхемы MC13150FTA, обеспечивает необходимый управляющий ток, реализующий полосу детектирования 26кГц.

Фильтр низких частот, образованный RC-цепочкой, включенной между детектором и УНЧ, должен быть рассчитан на верхнюю частоту спектра речевого сигнала, т.е. на 3,4кГц.


 Пусть , тогда


Блокировочные конденсаторы в цепях питания выберу следующим образом:

- для схем РЧ, ПЧ1 – по 1 мкФ;

- для ПЧ2 – 10 мкФ;

- для УНЧ – 100 мкФ.

Выбор остальных элементов можно осуществить, пользуясь типовыми схемами включения, поскольку во всех оставшихся цепях частоты совпадают с типовыми.

Заключение

В данном курсовом проекте был спроектирован приемник радиостанции, обладающий достаточно высокими характеристиками. Кроме того, что он соответствует всем требованием технического задания, по ряду показателей (избирательность, динамический диапазон) удалось добиться более высокого качества, чем требовалось. Во многом этому помогла современная элементная база, использованная при проектировании радиоприемника.

В частности, устройство обладает высокой чувствительностью, малыми искажениями, а также высокой избирательностью в отдельных частях линейного тракта приемника, что обеспечивает высокую селективность, присущую устройству в целом. Кроме того, спроектированный приемник способен работать в суровых климатических условиях в диапазоне температур -30..+60 C.

Стоит отметить, что в современных радиостанциях применяются микросхемы более высокой степени интеграции, чем те, что были применены в проекте. В частности, приемо-передающий тракт может быть реализован на микросхемах трансиверов (приемо-передатчиков). Использование подобных структур позволило бы упростить конструкцию радиостанции в целом, как конечной цели разработки. Но поскольку требования к передающему тракту в техническом задании не обозначены, было решено остановиться на отдельных микросхемах именно приемного тракта.



Список использованных источников


1.     Конспект лекций по дисциплине “Устройства приема и обработки информации”, Салтыков Е.Н.

2.     Проектирование радиоприемных устройств: Методические указания. Часть 1/ РГРТА; сост. Ю.Н. Паршин, Е.Н. Салтыков; под ред. Ю.Н. Паршина. Рязань, 2003.

3.     Исследование входных цепей: Методические указания к лабораторной работе / РГРТА; сост. А.С. Богданов, В.Н. Двойнин, Е.В. Zyxer/

4.     Справочник по учебному проектированию приемно-усилительных устройств/Белкин М.К., Белинский В.Т., Мазор Ю.Л., Терещук Р.М., Под ред. Д-ра техн. наук М.К. Белкина.–Киев: Вища школа, 1982.

5.     Чистяков Н.И., Сидоров В.М. Радиоприемные устройства. Учебник для вузов. М., Связь, 1974.

6.     Радиоприемные устройства. Под ред. проф. А.П.Жуковского. Учебное издание.–М.: Высшая школа, 1989.

7.     В.М. Петухов. Транзисторы и их зарубежные аналоги. Справочник. Том 1. –М: Радиософт, 1999.

8.     Электронный справочник радиолюбителя.

9.     www.alldatasheet.com

10. www.datasheetarchive.com

11. www.datasheetcatalog.com

 


Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.