Рефераты. Построение verilog-модели ber-тестера для проверки каналов связи телекоммуникационных систем

Построение verilog-модели ber-тестера для проверки каналов связи телекоммуникационных систем

Министерство образования Российской Федерации

Московский государственный институт электронной техники

(Технический университет)

Кафедра телекоммуникационных систем  (ТКС)

 

Дисциплина: Сети связи и системы коммутации

 

 

 

 

 

 

 

 

 

 

 

 

 

Техническое задание (c вариантом решения) на курсовой проект

 

ПОСТРОЕНИЕ VERILOG-МОДЕЛИ  BER-ТЕСТЕРА  ДЛЯ ПРОВЕРКИ КАНАЛОВ СВЯЗИ ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Москва 2002

1. Цель работы

1.1. Ознакомление с методикой тестирования каналов связи телекоммуникационных систем с помощью BER-тестера (Bit-Error-Rate – интенсивность поступления ошибочных битов от объекта проверки; определение дано в международном стандарте ITU-T O.153).

 1.2. Разработка логической модели  BER-тестера и анализ ее поведения в отсутствие и при наличии моделируемых ошибок в канале связи.

2. Основные сведения о BER-тестерах

2.1. Генераторы псевдослучайных битовых последовательностей

При тестировании каналов связи обычно применяют генераторы псевдослучайных битовых последовательностей. Пример схемы такого генератора приведен на рис. 2.1 [1]. Генератор выполнен на основе кольцевого сдвигового регистра RG с логическим элементом  Исключающее ИЛИ (XOR) в цепи обратной связи. Если в  исходном состоянии в регистре присутствует любой ненулевой код, то под действием синхросигнала  CLK  этот код будет непрерывно циркулировать в регистре и одновременно видоизменяться. В качестве выхода генератора можно также использовать выход любого разряда
регистра.


Рис. 2.1. Обобщенная схема генератора псевдослучайной битовой
последовательности максимальной длины и таблица для выбора
             промежуточной точки подключения обратной связи


В общем случае в М-разрядном регистре обратная связь подключается к разрядам с номерами  М  и  N 
(М > N). Приведенная на рис. 2.1 таблица описывает структуру генераторов различной разрядности. Каждый генератор формирует последовательность битов с максимальным периодом повторения, равным  2М – 1. В такой последовательности встречаются все М-разрядные коды, за исключением нулевого. Этот код представляет собой своеобразную “ловушку” для данной схемы: если бы нулевой код появился в регистре, дальнейшая последовательность битов была бы также нулевой. Но при нормальной работе генератора попадания в ловушку не происходит. Последовательность максимальной длины обладает следующими свойствами.

1. В полном цикле (2М – 1 тактов) число лог. 1 на единицу больше, чем число лог. 0. Добавочная лог. 1 появляется за счет исключения состояния, при котором в регистре присутствовал бы нулевой код. Это можно интерпретировать так, что вероятности появления на выходе регистра  лог. 0  и  лог. 1 практически одинаковы.

2. В полном цикле (2М – 1 тактов) половина серий из последовательных лог. 1 имеет длину 1, одна четвертая серий – длину 2, одна восьмая – длину 3 и т. д.

Такими же свойствами обладают и серии из лог. 0 с учетом пропущенного лог. 0. Это говорит о том, что вероятности появления “орлов” и “решек” не зависят от исходов предыдущих “подбрасываний”. Поэтому вероятность того, что серия из последовательных лог. 1 или лог. 0 закончится при следующем подбрасывании, равна  1/2  вопреки обывательскому пониманию “закона о среднем”.

3. Если последовательность полного цикла (2М – 1 тактов) сравнивать с этой же последовательностью, но циклически сдвинутой на любое число тактов W (W не является нулем или числом, кратным  2М – 1), то число несовпадений будет на единицу больше, чем число совпадений.

Идею тестирования канала связи с помощью прогона через него псевдослучайных битовых последовательностей удобно рассмотреть на примере использования пары устройств – скремблера и дескремблера.


2.2. Скремблер – дескремблер с неизолированными генераторами
псевдослучайных битовых последовательностей

Скремблер (шифратор) и дескремблер (дешифратор) подключаются к противоположным сторонам канала связи, как показано на рис. 2.2. Скремблер и дескремблер выполнены на основе рассмотренных генераторов псевдослучайных битовых последовательностей. Оба генератора имеют одинаковую разрядность и однотипную структуру обратных связей. Все процессы, протекающие в системе передачи данных, синхронизируются от тактового генератора (на рисунке не показан). Этот генератор размещен на передающей стороне системы и может принадлежать источнику данных либо скремблеру. В каждом такте на вход скремблера подается очередной бит передаваемых данных  SD, а в сдвиговом регистре RG1 накопленный код продвигается вправо на один разряд.

Рис. 2.2. Система передачи данных, в которой скремблер и дескремблер содержат неизолированные
                                           генераторы псевдослучайных битовых последовательностей

Если предположить, что источник данных посылает в скремблер длинную последовательность лог. 0, то элемент  XOR1  можно рассматривать как повторитель сигнала  Y1 с выхода элемента  XOR2. В этой ситуации регистр  RG1  замкнут в кольцо и генерирует точно такую же псевдослучайную последовательность битов, как и в рассмотренной ранее схеме (см. рис. 2.1). Если от источника данных поступает произвольная битовая последовательность, то она взаимодействует с последовательностью битов с выхода элемента  XOR2. В результате формируется новая (скремблированная) последовательность битов  SCRD, по структуре близкая случайной. Эта последовательность, в свою очередь, продвигается по регистру  RG1, формирует поток битов на выходе элемента  XOR2 и т. д.

Скремблированная последовательность битов  SCRD  передается по линии (каналу связи) и поступает в дескремблер. С помощью генератора с фазовой автоподстройкой частоты (этот генератор на рисунке не показан) из входного сигнала выделяется тактовый сигнал. Под управлением тактового сигнала биты  SCRD  продвигаются в регистре  RG2, а в приемник данных поступают дескремблированные данные  RD.

Потоки данных  RD  и  SD совпадают с точностью до задержки передачи по линии. Действительно, в установившемся режиме в сдвиговых регистрах  RG1  и  RG2  присутствуют одинаковые коды, так как на входы этих регистров поданы одни и те же данные  SCRD, а тактовая частота, по сути, общая. Поэтому  Y2 = Y1, и, с учетом этого, 
RD = SCRD Å Y2 = SD Å Y1 Å Y2 = SD Å Y1 Å Y1 = SD Å 0 = SD.

Рассмотренная система передачи данных не требует применения какой-либо специальной процедуры начальной синхронизации. После заполнения сдвигового регистра  RG2, как было показано, генераторы псевдослучайных битовых последовательностей работают синхронно (их состояния всегда одинаковы). При появлении одиночной ошибки в линии синхронизация временно нарушается, но затем автоматически восстанавливается, как только правильные данные вновь заполнят регистр  RG2. Однако в процессе продвижения ошибочного бита по сдвиговому регистру  RG2,  а именно, в периоды его попадания сначала на первый, а затем на второй вход элемента  XOR3  сигнал  Y2  дважды принимает неправильное значение. Это приводит к размножению одиночной ошибки – она впервые появляется в сигнале  RD  в момент поступления из линии и затем возникает еще два раза при последующем двукратном искажении сигнала  Y.

При тестировании линии источник данных выдает постоянный нулевой сигнал 
SD = 0. Скремблер генерирует псевдослучайную последовательность битов. Дескремблер восстанавливает прообраз принятого псевдослучайного сигнала. При отсутствии ошибок передачи в приемник данных поступает постоянный нулевой сигнал  RD = 0. Обнаружение пачки из трех импульсов (из-за размножения ошибки в регистре RG2) расценивается приемником данных как одиночная ошибка передачи данных по линии связи.


2.3. Вариант практической реализации тестера – объект моделирования

Как показано на рис. 2.3, для тестирования цепей передачи синхросигналов RxC  и  данных  RхD  канала связи между устройствами  DTE  и  DCE  использованы генератор и анализатор псевдослучайных последовательностей битов. По существу, генератор и анализатор представляют собой рассмотренные ранее скремблер и дескремблер, причем скремблируется сигнал “Постоянный нуль”, т. е. последовательность нулевых битов
(SD = 0, см. рис. 2.2). В отсутствие ошибок передачи сигналов  RxC  и  RxD  сигнал на выходе триггера  TT  также должен быть нулевым.

Для имитации помех в канале связи использованы генераторы  G2  и  G3. Генератор  G2  в определенном такте (тактах) формирует сигнал лог. 1. Этот сигнал воздействует на логический элемент Исключающее ИЛИ, в результате элемент временно переводится в режим инвертирования передаваемого через него бита (битов) данных. Таким образом, вместо истинного нулевого бита передается ложный единичный или наоборот. Для имитации канала связи без помех в линии передачи данных на выходе генератора  G2  должен постоянно присутствовать сигнал лог. 0.

Аналогично имитируется сигнал помехи, действующей на линию передачи синхросигнала. В отсутствие помех на выходе генератора  G3  постоянно присутствует сигнал лог. 0. Появление в некотором такте на выходе генератора  G3  сигнала лог. 1 приводит к временному искажению синхросетки передаваемых данных, так как при этом  теряется один синхроимпульс.


Рис. 2.3. Система контроля передачи данных и синхросигнала между устройствами типа  DCE  и  DTE

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.