Рефераты. Построение системы автоматического контроля

Далее цифровой код поступает на блок мультиплексоров, один из которых отвечает за формирование стартового и стопового бита, а другой – за последовательность посылки битов на интерфейс с ЭВМ.


4. ОБОСНОВАНИЕ ВЫБОРА ПРИНЦИПИАЛЬНОЙ СХЕМЫ


Выбор принципиальной схемы (см. приложение) обусловлен выбранной функциональной схемой и алгоритмом работы устройства. Ниже, при описании работы устройства, обоснуем выбор некоторых узлов принципиальной схемы.

Принципиальная схема определяет полный состав элементов и связи между ними и дает детальное представление о принципах работы устройства.

Большинство интегральных микросхем выполнено на КМДП-транзисторах. И это не случайно.

В качестве эксплуатационных характеристик КМДП ИС, свойственных только им, следует назвать: работоспособность в широком диапазоне питающих напряжений (3…15 В), высокую помехозащищенность, достигающую 30…45 % от значения питающего напряжения, высокую нагрузочную способность, составляющую до 1000 входов таких же ИС на частотах до нескольких килогерц, высокое входное сопротивление (~1012 Ом), упрощенное сопряжение по слаботочным источникам входного напряжения. Кроме того, имеются и существенные преимущества в технологии КМДП ИС по сравнению с биполярными ИС, к наиболее важным из которых относятся: меньшее (почти в три раза) число технологических операций; самоизоляция от других элементов, расположенных на одной подложке; более высокая степень интеграции (30%) на кристалле.

Исключительно малая потребляемая мощность, открывает для КМДП ИС широкую перспективу применения, в первую очередь в устройствах с автономным питанием: различных бортовых устройствах, в автономных устройствах сбора и обработки данных и т.д., т.е. там, где энергетический фактор оказывается решающим при выборе элементной базы и где по существу им нет альтернативы.

На КМДП-логике у нас построены все логические элементы, счетчики, регистр и мультиплексоры.

Построение систем сбора и цифровой обработки аналоговых сигналов на современных БИС ЦАП, АЦП и микропроцессорных наборах обеспечивает создание функционально полных устройств с точностью, соответствующей 10-12 разрядам, и временем преобразования на канал 1…2 мкс. Причем эти устройства конструктивно всегда размещаются на одной-двух платах. Значительно упростить построение системы сбора может СБИС однокристальной аналогово-цифровой системы типа К572ПВ4. В нашей схеме эта СБИС выполняет мультиплексирование аналогового сигнала и преобразование его в цифровой код.

Задающий генератор выполнен на элементах DD1.1 и DD1.2. Тактовая частота 32767 Гц выбрана из соображений доступности часовых кварцевых резонаторов. Счетчик DD5.1 с элементами DD4.2, DD1.3 образуют делитель тактовой частоты с коэффициентом деления 14. Получающаяся при этом скорость передачи данных — примерно 2341 Бод — отличается от стандартной 2400 Бод менее чем на 3%, что вполне допустимо для асинхронного режима работы. Счетчик DD5.2 формирует последовательность передаваемых 10 бит: стартовый бит, 8 бит данных, 1 стоповый бит без бита паритета.

До начала описания будет полезным упомянуть о технических параметрах примененного в курсовом проекте стандарта RS-232C:

Стандарт RS-232C введен в 1962 году и в настоящее время широко применяется в промышленности. Этот стандарт был разработан для несимметричной передачи данных на короткие расстояния с низкой скоростью.

· Требования стандарта к передатчику:

1) Выход должен выдержать режим холостого хода или короткого замыкания на землю силового или какого либо другого проводника.

2) R при вкл. питании 300 Ом.


3) Uxx мак =+/-25B.

4) Iмак вх кз=500мА.


5) Абсолютное значение сигнала на выходе передатчика на нагрузке от 3000 до 7000 Ом,должна быть более 5В ,но не более 15В.

6) Время наростания и спада сигнала в пределах переходной зоны между +3 и -3В не должно превышать 1мкс.

7) Скорость спада выходного сигнала не должна превышать 30В/мкс.

8) Максимальная скорость передачи данных 20000 бод.

· Требования стандарта к приемнику:


1) Rвх=3000 % 7000 Ом.


2) Шунтирующая Смак между входом приемника и соединительным кабелем должна быть менее 2500 пФ.


3) Uвх хх < 2.0B.


4) Максимальная скорость приема данных 20Кбод.


5) Пределы Uвх +/-25В.


Для того чтобы облегчить соединение оборудования, в котором используется стандарт RS-232, был стандартизирован и 25 контактный соединитель для интерфейса по стандарту RS- 232C (см. таблицу 4.1.)


Таблица 4.1.Обозначение контактов соединителя для стандарта RS-232C.

9-контактный соединитель, номер контакта

Обозначение

Описание

1

DCD

Детектор принимаемого с линии сигнала

2

RxD

Принимаемые данные

3

TxD

Передаваемые данные

4

DTR

Готовность выходных данных

5

GND

Сигнальное заземление

6

DSR

Готовность приема данных

7

RTS

Запрос передачи

8

CIS

Сброс передачи

9

RI

Индикатор вызова


Рассмотрим процесс передачи байта.

В исходном состоянии (пауза) работа DD8 запрещена высоким уровнем на выходах элемента DD3.2, транзистор VT1 открыт, и в линии связи (вывод 2 ХS1) устанавливается отрицательное напряжение, соответствующее уровню логической “1”.

После сброса DD5.2 на его выходах устанавливаются низкие уровни. Hа базу VT1 через выходы Х0 мультиплексора DD7 и Y0 мультиплексора DD8 подается низкий уровень, VT1 закрывается, и в линии уславливается положительное напряжение — формируется стартовый бит. Далее изменением кода на выходах Q0…Q2 счетчика DD5.2 последовательно переключаются каналы X1...Х7 мультиплексора DD8 — в линию передаются биты данных DB0...DB5 микросхемы DD9 и с выхода “1” регистра DD9.2. По окончании передачи бита “1” регистра DD9.2 выход Q3 счетчика DD5.2 устанавливается в "1", a Q0...Q2 — в "0". На выход через каналы X1 мультиплексора DD7 и Х0 мультиплексора DD8 подается бит “1” регистра DD9.1, который вместе с битом “1” регистра DD9.2 играет роль идентификатора передаваемого байта. По окончании передачи бита “1” регистра DD9.1 счетчик D5.2 сбрасывается и одновременно происходит переключение DD6.1 — на его выходе Q0 устанавливается низкий уровень, а на выходе DD3.2 — высокий, запрещающий работу в DD8 и отключающий выходы в DD9. В линии формируется стоповый бит и его уровень удерживается в течение интервала времени, равного длительности посылки 9*3 бит(3 т.к. 3 стоповых бита). В течении этого времени устанавливается в состояние логического "1" вход ALE АЦП К572ПВ4, что позволяет зафиксировать адрес необходимого канала в регистре К561ИР2 (DD9) и на входах A0,A1 во внутреннем ОЗУ АЦП.

По окончании паузы процесс передачи данных повторятся аналогичным образом для следующего байта. Отличие состоит в том, что для следующего байта будут другие 0-ой и 1-ый биты. За это отвечает регистр DD9, хранящий четыре комбинации ( 0-00, 1-01, 2- 10, 3-11 ). Это позволяет однозначно идентифицировать все четыре канала от датчиков. Таким образом, процесс передачи данных происходит следующим образом:

Пауза0 – пауза1 – пауза2 – передаваемый байт – пауза0 –…

Общая пауза между принятыми байтами (примерно 4 мс) позволяет произвести их сортировку и заполнение массива данных а ОЗУ компьютера, а также обновить их в локальном ОЗУ DD9.

0птрон V01 преобразует уровни КМДП и уровни RS-232 и одновременно осуществляет гальваническую развязку линии связи. Это — простое, но эффективное средство защиты компьютера, поскольку ни обычные мультиплаты IBM PC, ни платы адаптеров интерфейсов ЕС-1841 полной гальванической развязки не имеют. В крайнем случае, можно обойтись без оптрона, изменив схему выходного каскада.

Линия связи питается от отдельного биполярного источника питания +12В, -12В. Поскольку ток, потребляемый линией связи невелик, в качестве источника питания может использоваться, например, преобразователь напряжения на основе блокинг-генератора.


5.                  ОПИСАНИЕ ЭЛЕМЕНТОВ СХЕМЫ


В состав КМДП серий ИС включены счетчики импульсов, которые относятся к микросхемам средней интеграции. Основное функциональное назначение этих типов ИС – счет импульсов и деление частот. Счетчики импульсов КМДП-серий можно разделить на две условные группы: специализированные счетчики и универсальные счетчики общего назначения. Основные параметры счетчиков импульсов приведены в таблице 5.1.


Таблица 5.1. Основные параметры счетчиков

Тип микросхемы

Разрядность

Напряжение питания Uип, В

Ток потребления Iпот, мкА

Потребляемая мощность Рпот, мВт

К176ИЕ1

6

 9

20

0.18

К561ИЕ8

10

 10

20

0.2

К561ИЕ10

4

 10

100

1

К561ИЕ16

14

 10

20

0.2

К561ИЕ9

8

 10

100

1

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.