Рефераты. Основы проектирования интегральных микросхем широкополосного усилителя

I эmах = 0,16 Пэф,(3.1)


где

Iэmах–эмиттерный ток, превышение которого вызывает переход к высокому уровню инжекции;

Пэф–эффективный периметр эмиттера.

Максимальный эмиттерный ток для транзисторов использующихся в схеме широкополосного усилителя приведен в таблице 1. Типовое значение эмиттерного тока - Iэmах = 4 мА, то есть подставляя данное значение тока в соотношение 3.1 можно определить эффективный периметр эмиттера:


Пэфф = = 16 мкм


При работе транзистора фактически инжектирует только та часть эмиттера, которая ближе к базовому контакту. Тогда расчетный размер эмиттера выберем равным 16 мкм. Таким образом, эмиттер транзистора будет иметь квадратную форму со стороной


bэ = lэ = 3 dmin – Δ = 14 мкм.


Окна к эмиттерной области выберем равным минимальному размеру окна в окисле dmin = bэк = lэк = 6 мкм.

Как было замечено выше, погрешность совмещения фотошаблонов и погрешность при изготовлении фотошаблона равны Δсовм = Δфш =0,5 мкм, минимальный размер окна в окисле dmin = 6 мкм.

Все остальные геометрические размеры транзистора рассчитываются по формулам, приведенным в пункте 2.

Длина области базы рассчитывается по формуле 2.4

lб ≥ 14 + 4·6 + 2∙0,5 + 0,5 = 39,5 мкм.

Примем lб = 40 мкм.

Ширина области базы рассчитывается по формуле 2.5

bб ≥ 14 + 2·6 + 2∙0,5 + 0,5 = 27,5 мкм.

Примем bб = 28 мкм.

Длина окна контакта к базовой области равна минимальному размеру окна в окисле lбк = dmin = 6 мкм, ширина

bбк ≤ bб – 2dmin + 2Δфш + Δсовм = 28 – 12 + 1 + 0,5 = 15,5 мкм.


Примем bбк = 14 мкм.


a ≥ hэс+ xjкб+2Δфш + Δсовм = 8 + 2,5 + 1 + 0,5 = 12 мкм,

с  hэс+xjэб+2Δфш + Δсовм = 8 + 1,7 + 1 + 0,5 = 11,2 мкм.


Примем с = 12 мкм.


f  xiкб+xjэб+2Δфш + Δсовм = 2,5 + 1,7 + 1 + 0,5 = 5,7 мкм.


Примем f = 6 мкм.


 = 28 + 24 + 1 + 0,5 = 53,5 мкм.


Примем bк = 54 мкм.

Геометрические размеры подконтактной области коллектора рассчитываются по формулам


 = 18 + 1 + 0,5 = 19,5 мкм.


Примем lкк = 18 мкм.


 = 54 – 24 + 1 + 0,5 = 31,5 мкм.


Примем bкк = 30 мкм.

 = 40 + 18 + 12 + 12 + 6 + 1 +0,5 =

= 89,5 мкм,

Примем lк = 90 мкм.


3.2 Расчет геометрических размеров диффузионного резистора


В схеме широкополосного усилителя (Приложение А) имеются 9 резисторов с разбросом номиналов от 700 Ом до 5,4 кОм и различной мощностью рассеивания. Наибольшее распространение получили диффузионные резисторы на основе базовой диффузии.

Так как все резисторы выполнены на одном слое, то нет необходимости приводить подробные расчеты каждого резистора. Для примера, рассчитаем резистор R1 и проведем расчет его геометрических размеров по методике описанной в пункте 2.2, при Rs = 250 Ом/□.

Расчет начинаем с определения коэффициента формы:



Так как Кф > 1, то расчет начинаем с расчета ширины резистора - b.


,(2.14)


где

-минимальная ширина резистора, обеспечивающая необходимую рассеиваемую мощность;

-минимальная эффективная ширина резистора, обеспечивающая заданную точность изготовления.

Минимальная эффективная ширина диффузионного резистора bmin = dmin = 6 мкм.

Из соотношения 2.15 определяем . Значение рассеиваемой резистором мощности и номинал приведено в табличных данных задания на курсовой проект, типовое значение допустимой мощности рассеиваемой резистором – P0 ≈ 5 Вт/мм2.

 = 3,45 мкм


;

.


где

YR = 20 %-относительная погрешность номинала резистора;

YRs = 5 - 10 %-относительная погрешность поверхностного сопротивления (примем YRs = 10 %);

-относительная погрешность изменения номинала при изменении температуры. Температурный коэффициент сопротивления базового резистора - αT = 0,002 Ом∙К-1.

∙100 % = 29 %


 = 20 – 10 – 29 = 20 %

 = 1,1 мкм


Примем эффективную ширину резистора - bрасч. = 6 мкм.

lрасч = Кф∙bрасч = 16,8 ∙ 6 = 100,8 мкм.


Примем lрасч. = 101мкм.

По формуле (2.20) проведем проверку номинала резистора исходя из расчетных значений длины и ширины резистора.

R1 = 250∙[(95/6) + (4-1) ∙ 0,55] = 18,6∙250 = 4,3 кОм

Аналогичным образом производиться расчет для остальных резисторов.



.


Минимальная эффективная ширина диффузионного резистора bmin = dmin = 6 мкм.

 = 44,7 мкм


;

.


где

YR = 15 %;

YRs = 10 %

 30 %

 = 15 – 10 – 30 = 25 %

 = 7 мкм


Примем эффективную ширину резистора - bрасч. = 45 мкм.

lрасч = Кф∙bрасч = 0,4 ∙ 45 = 18 мкм.

Примем lрасч. = 18 мкм.

По формуле (2.20) проведем проверку номинала резистора исходя из расчетных значений длины и ширины резистора.

R3 = 250∙(18/45) = 100 Ом

Остальные резисторы рассчитываются аналогичным образом.


4 Основные правила проектирования топологии ИМС


Главное требование при разработке топологии - максимальная плотность упаковки элементов при минимальном количестве пересечений межэлементных соединений. При этом обеспечивается оптимальное использование площади кристалла при выполнении всех конструктивных и технологических требований и ограничений. Исходными данными при разработке топологии являются принципиальная электрическая схема, технологические и конструктивные требования и ограничения.

При разработке топологии ИМС придерживались следующих основных правил проектирования топологии полупроводниковых ИМС с изоляцией p-n-переходом [1]:

1). Для учета влияния диффузии примеси под маскирующий окисел, растравливания окисла, ошибок фотолитографии при составлении топологической схемы все элементы схем, кроме контактных площадок, рекомендуется размещать на расстоянии от щели под разделительную диффузию, равном удвоенной толщине эпитаксиального слоя.

2). К изолирующим p-n-переходам всегда должно быть приложено напряжение обратного смещения, что практически осуществляется подсоединением подложки p-типа, или области разделительной диффузии p-типа, к точке схемы с наиболее отрицательным потенциалом. При этом обратное напряжение, приложенное к изолирующему p-n - переходу, не должно превышать напряжения пробоя.

3). При размещении элементом микросхем и выполнении зазоров между ними необходимо строго выполнять ограничения, соответствующие типовому технологическому процессу.

4). Резисторы, формируемые на основе базового диффузионного слоя, можно располагать в одной изолированной области, которая подключается к самому положительному потенциалу схемы, т.е. к коллекторному источнику питания.

5). Резисторы на основе эмиттерного и коллекторного слоев следует располагать в отдельных изолированных областях.

6). Реальная форма резисторов, кроме ширины полоски, не является критичной. Резисторы могут быть прямыми, изогнутыми или иметь любую другую форму, однако во всех случаях отношение длины резистора к его ширине должно быть согласовано с удельным сопротивлением исходного диффузионного слоя и обеспечено получением заданного номинала. Высокоомные резисторы следует выполнять в виде параллельных полосок с перемычками между ними. Номинальное сопротивление резистора в этом случае будет выдержано более точно, чем при изогнутом резисторе.

7). Для уменьшения мест локального нагрева резисторы с большой рассеиваемой мощностью не следует располагать вблизи активных элементов, а рекомендуется выносить из на край кристалла.

8). Резисторы, у которых нужно точно выдержать отношение номиналов, должны иметь одинаковую ширину и конфигурацию и располагаться рядом с друг другом. Это правило относится и к другим элементам микросхем, для которых требуется обеспечить согласование характеристик, т.е. их топологии должны быть одинаковы, а взаимное расположение - как можно более близким.

9). Любой диффузионный резистор может пересекаться проводящей дорожкой, так как проведение металлического проводника по слою двуокиси кремния, покрывающего резистор, не оказывает существенного вредного влияния.

10). Форма и место расположения конденсаторов не является критичными.

11). Для диффузионных конденсаторов требуются отдельные изолированные области. Исключение составляют случаи, когда один из выводов конденсатора является общим с другой изолированной областью.

12). Транзисторы n-p-n-типа, работающие в режиме эмиттерного повторителя, можно размещать в одной изолированной области вместе с резисторами.

13). Все коллекторные области n-типа, имеющие различные потенциалы, должны быть изолированы.

14). Для каждого диода, формируемого на основе перехода коллектор-база, должна быть предусмотрена отдельная изолированная область. Диоды, формируемые на основе перехода эмиттер-база, можно размещать в одной изолированной области.

15). Для улучшения развязки между коллекторными изолированными областями контакт к подложке рекомендуется выполнять в непосредственной близости от мощного транзистора.

16). Для диффузионных областей требуются отдельные изолированные области.

17). Для уменьшения паразитной емкости между контактными площадками и подложкой под каждой из них рекомендуется создавать изолированную область. В этом случае емкость между контактной площадкой и подложкой оказывается включенной последовательно с емкостью изолирующего перехода и, следовательно, результирующая паразитная емкость уменьшается.

18). Соединения, используемые для ввода питания и заземления, следует выполнять в виде коротких широких полосок, что обеспечивает уменьшение паразитных сопротивлений.

19). Число внешних выводов в схеме, а также порядок расположения и обозначения контактных площадок выводов микросхем на кристалле должны соответствовать выводам корпуса.

20). Коммутация элементов микросхем должна иметь минимальное количество пересечений. Если полностью избежать пересечений не удается, их можно осуществить, используя обкладки конденсаторов, формируя дополнительные контакты к коллекторным областям транзисторов, применяя диффузионные перемычки и создавая дополнительные слои изоляции между пересекающимися проводниками. При разработке топологической схемы необходимо стремиться к получению минимально возможной длины межэлектродных соединений.

21). Когда наличие паразитных емкостей не существенно, резисторы могут быть размещены в тех же изолированных областях, что и транзисторы. При этом не имеет значения, должны ли они соединяться между собой. Расстояние между резисторами должно быть не менее 10 мкм. Коллектор транзистора и резистор должны располагаться на расстоянии не менее 12 мкм.

22). Расстояние между диффузионной базовой областью и контактом коллектора может быть увеличено, чтобы провести одну или две металлические дорожки между контактами коллектора и базы. Это можно сделать, так как коллекторный ток главным образом протекает от базы через скрытый слой к коллекторному контакту. Однако чем больше расстояние между базой и коллектором, тем больше паразитное сопротивление и паразитная емкость коллектора. Металлический проводник не может быть размещен между контактами базы и эмиттера за счет удлинения диффузионного базового слоя.

23). Наиболее важным правилом при разработке топологии является минимизация площади, занимаемой микросхемой. Это позволяет увеличить число микросхем, изготовляемых на пластине с заданным диаметром. Кроме того, необходимо учесть, что вероятность случайных дефектов в полупроводниковом кристалле возрастает с увеличением площади. Размеры микросхем зависят от числа изолирующих областей и их площадки, а также от суммарной площади соединительной металлизации, включая площадь, занимаемую контактными площадками.

4.1 Проектирование топологии ИМС широкополосного усилителя


Исходными данными являются принципиальная электрическая схема (Приложение А) геометрические размеры элементов. На этом этапе решаются такие вопросы, как определение необходимого числа изолированных областей, минимизация возможного числа пересечений коммутационных шин элементов и длины шин.

Все транзисторы данной ИМС выполнены по стандартной конфигурации рис.1.2.

Транзисторы VT3, VT5 исполняют роль дифференциального усилителя нагруженного активной нагрузкой выполненной на транзисторах VT2, VT4 и резисторы R2, R4. Диоды D1, D2 включенные последовательно задают напряжение смещения на базе транзисторов. Транзисторы VT1, VT7 включенные по схеме с общим эмиттером обеспечивают большое входное сопротивление данной схемы. Оконечный каскад выполнен на транзисторах VT8, VT9 и резисторах R6 – R9.

Резисторы R1 – R5, R6, R8 – R9 обладают довольно большим номиналом, следовательно, имеют сложную форму, т.е. выполнены в виде меандра. Резисторы помещены в два изолирующих кармана, и подключается к самому высокому потенциалу схемы, т.е. к коллекторному источнику питания.

При проектировании топологии усилителя использовалось один слой металлизации.

Для уменьшения паразитной емкости между контактными площадками и подложкой под каждой из них создана изолированная область.

Топологический чертеж принципиальной схемы приведен в Приложении Б.

Заключение


На основе исходных данных приведенных в задании была разработана библиотека элементов и рассчитаны геометрические размеры элементов. На основе рассчитанных элементов был разработан эскиз топологии ИМС широкополосного усилителя.


Список использованных источников


1.Матсон Э.А., Крыжановский Д.В. Справочное пособие по конструированию микросхем Мн.: Высш. шк. 1982

2.Конструирование и технология микросхем. Курсовое проектирование: Учеб. пособие для вузов. Коледов Л.А., Волков В.А., Докучаев Н.Н. и др.; Под ред. Л.А. Коледлва.-М.: Высш. шк., 1984. 231с., ил.

3.Березин А.С., Мочалкина О.В. Технология и конструирование интегральных схем М. Радио и связь 1983 г

4.Курносов. А. И., Юдин В. В. Технология производства полупроводниковых и интегральных микросхем – М.: Высшая школа, 1986 г. – 368 с.


Приложение А




Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.