Рефераты. Организация адресации в ip сетях

     <-->

   10010000

 10010000

   0000000

0       00000000

 


   Расширенный сетевой префикс

 

                                   

Такая схема позволяет создать 27 подсетей размером в 29 узлов каждая. Это подходит к случаю, когда есть много подсетей с большим количеством узлов. Но если среди этих сетей есть такие, количество узлов в которых находится в пределах ста, то в каждой их них будет пропадать около 400 адресов. Решение состоит в том, что бы для одной сети указывать более одного расширенного сетевого префикса. О такой сети говорят, что это сеть с маской подсети переменной длины (VLSM). Действительно, если для сети 144.144.0.0/16 использовать расширенный сетевой префикс /25, то это больше бы подходило сетям размерами около ста узлов. Если допустить использование обеих масок, то это бы значительно увеличило гибкость применения подсетей. Общая схема разбиения сети на подсети с масками переменной длины такова: сеть делится на подсети максимально необходимого размера. Затем некоторые подсети делятся на более мелкие, и рекурсивно далее, до тех пор, пока это необходимо. Кроме того, технология VLSM, путем скрытия части подсетей, позволяет уменьшить объем данных, передаваемых маршрутизаторами. Так, если сеть 12/8 конфигурируется с расширенным сетевым префиксом /16, после чего сети 12.1/16 и 12.2/16 разбиваются на подсети /20, то маршрутизатору в сети 12.1 незачем знать о подсетях 12.2 с префиксом /20, ему достаточно знать маршрут на сеть 12.1/16.





2.2 Протокол межсетевого  взаимодействия IP. Формат IP дейтограмм


            Перенос между сетями различных типов адресной информации в унифицированной форме, сборка и разборка пакетов при передаче их между сетями с различным максимальным значением длины пакета.
  Таблица 4 - Формат IP дейтаграммы.

          версия

      длина

тип сервиса

общая длина пакета в байтах

                       Идентификация

         (для всех фрагментов одинаковое)

флаги (3бита)

  Смещение           фрагмента

время жизни

         протокол

                FCS заголовка

IP-адрес отправителя

IP-адрес получателя

Опции IP (если есть)

заполнение (до 32 бит)

Данные


Версия (IPv4), длина заголовка в 32 бит. словах, тип сервиса (для интеллектуальных маршрутизаторов, PPPDTRхх, P - приоритет (для будущего), D,T,R - запрашиваются мин. задержки, макс. пропускная способность, макс.надежность).Флаги Do not Fragment - DF, More Fragments - MF - еще фрагменты.Time to live - в секундах сколько жить пакету(перегрузки и кольца, снятие 1 при любом переходе). Опции IP (если есть) - для тестирования или отладки сети (напр. запись маршрута или обязательное прохождение по маршруту).





                                             




Рисунок 5 - Дейтаграмма UDP

Протокол доставки пользовательских дейтаграмм UDP. Формат сообщений UDP. Протокол надежной доставки сообщений TCP (Transmission Control Protocol). Порты и установление TCP-соединений.Протокол доставки пользовательских дейтаграмм UDP. Без гарантий доставки, поэтому его пакеты могут быть потеряны, продублированы или прийти не в том порядке, главное - быстрота. Мультиплексирование и демультиплексирование прикладных протоколов с помощью протокола UDP.

Формат сообщений UDP.

·       UDP source port - номер порта процесса-отправителя,

·       UDP destination port - номер порта процесса-получателя,

·       UDP message length - длина UDP-пакета в байтах,

·       UDP checksum - контрольная сумма UDP-пакета.

(!) Можно не заполнять поля 1 и 4.
Протокол надежной доставки сообщений TCP (Transmission Control Protocol).
Сверху - неструктурированный поток байт, вниз - сегменты (осн. единица TCP). Договор о макс. длине сегмента (не должен превышать поле данных IP дейтаграммы).
Порты и установление TCP-соединений.
Установление логического соединения. Адрес каждой оконечной точки включает IP адрес и номер порта TCP. Одна оконечная точка может участвовать в нескольких соединениях.


2.3 Проблемы классической схемы


В середине 80-х годов Internet впервые столкнулся с проблемой переполнения таблиц магистральных маршрутизаторов. Решение, однако, было быстро найдено -- подсети устранили проблему на несколько лет. Но уже в начале 90-х к проблеме большого количества маршрутов прибавилась нехватка адресного пространства. Ограничение в 4 миллиарда адресов, заложенное в протокол и казавшееся недосягаемой величиной, стало весьма ощутимым. В качестве решения проблемы были одновременно предложены два подхода -- один на ближайшее будущее, другой комплексный и долгосрочный. Первое решение -- это внедрение протокола бесклассовой маршрутизации (CIDR), к которому позже присоединилась система NAT. Долгосрочное решение -- это протокол IP следующей версии. Он обозначается, как IPv6, или IPng (Internet Protocol next generation). В этой реализации протокола длина адреса увеличена до 16-ти байтов (128 бит!), исключены некоторые элементы действующего протокола, которые оказались неиспользуемыми. Новая версия обеспечит, как любят указывать, плотность в 3 911 873 538 269 506 102 IP адресов на квадратный метр поверхности Земли. Однако то, что и в 2000-м году протокол все еще проходил стандартизацию, и то, что протокол CIDR вместе с системой NAT оказались эффективным решением, заставляет думать, что переход с IPv4 на IPng потребует очень много времени. Появление этой технологии было вызвано резким увеличением объема трафика в Internet и, как следствие, увеличением количества маршрутов на магистральных маршрутизаторах. Так, если в 1994 году, до развертывания CIDR, таблицы маршрутизаторов содержали до 70 000 маршрутов, то после внедрения их количество сократилось до 30 000. На сентябрь 2002, количество маршрутов перевалило за отметку 110 000! Можете себе представить, сколько маршрутов нужно было бы держать в таблицах сегодня, если бы не было CIDR! Что же представляет собой эта технология? Она позволяет уйти от классовой схемы адресации, эффективней использовать адресное пространство протокола IP. Кроме того, CIDR позволяет агрегировать маршрутные записи. Одной записью в таблице маршрутизатора описываются пути ко многим сетям. Суть технологии CIDR состоит в том, что каждому поставщику услуг Internet (или, для корпоративных сетей, какому-либо структурно-территориальному подразделению) должен быть назначен неразрывный диапазон IP-адресов. При этом вводится понятие обобщенного сетевого префикса, определяющего общую часть всех назначенных адресов. Соответственно, маршрутизация на магистральных каналах может реализовываться на основе обобщенного сетевого префикса. Результатом является агрегирование маршрутных записей, уменьшение размера таблиц маршрутных записей и увеличение скорости обработки пакетов. Допустим, центральный офис компании выделяет одному своему региональному подразделению сети 172.16.0.0/16 и 172.17.0.0/16, а другому -- 172.18.0.0/16 и 172.19.0.0/16. У каждого регионального подразделения есть свои областные филиалы и из полученного адресного блока им выделяются подсети разных размеров. Использование технологии бесклассовой маршрутизации позволяет при помощи всего одной записи на маршрутизаторе второго подразделения адресовать все сети и подсети первого подразделения. Для этого указывается маршрут к сети 172.16.0.0 с обобщенным сетевым префиксом 15. Он должен указывать на маршрутизатор первого регионального подразделения. По своей сути технология CIDR родственна VLSM. Только если в случае с VLSM есть возможность рекурсивного деления на подсети, невидимые извне, то CIDR позволяет рекурсивно адресовать целые адресные блоки. Использование CIDR позволило разделить Internet на адресные домены, внутри которых передается информация исключительно о внутренних сетях. Вне домена используется только общий префикс сетей. В результате многим сетям соответствует одна маршрутная запись.


                 2.4 Примеры организации адресации в IP сетях    


В конце статьи хотелось бы привести практические примеры по затронутым в статье темам. Проектирование адресной схемы требует от специалиста тщательной проработки многих факторов, учета возможного роста и развития сети. Начнем с примера разбиения сети на подсети. При любом планировании нужно знать, сколько подсетей необходимо сегодня и может понадобиться завтра, сколько узлов находится в самой большой подсети сегодня и сколько может быть в будущем. Кроме того, следует разработать хотя бы схематическую топологию сети с указанием всех маршрутизаторов и шлюзов. Хорошей практикой является резервирование ресурсов на будущее. Так, если в самой большой подсети находится 60 узлов, не следует выделять подсеть размерностью в 26 - 2 (=62) узла! Не скупитесь, стоимость решения возможной проблемы будет больше, нежели стоимость выделения в два раза большего блока адресов. Однако не нужно впадать и в другую крайность.

    

                  Пример 1

Организации выделен блок адресов 220.215.14.0/24. Разбить блок на 4 подсети, наибольшая из которых насчитывает 50 узлов. Учесть возможный рост в 10%. На первом этапе необходимое число подсетей мы округляем в большую сторону к ближайшей степени числа 2. Поскольку в данном примере число необходимых подсетей равно 4, округлять не нужно. Определим количество бит, нужных для организации 4 подсетей. Для этого представим 4 в виде степени двойки: 4 = 22 . Степень -- это и есть количество бит отводимых для номера подсети. Так как сетевой префикс блока равен 24, то расширенный сетевой префикс будет равен 24 + 2 = 26.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.