Рефераты. Операционные системы различных фирм

Микроядерный подход заключается в том, что базовые функции ядра оформляются в виде отдельной небольшой компоненты, выполняемой в привилегированном режиме, а остальные функции ОС выполняются в пользовательском режиме с использованием примитивов микроядра. Ввиду больших потенциальных преимуществ, которые сулит этот подход, можно предположить, что в ближайшее время большинство новых операционных систем будет строиться на основе микроядра. Наиболее известными реализациями этого подхода являются микроядра Mach и Chorus.

Основной сложностью использования микроядерного подхода на практике является замедление скорости выполнения системных вызовов при передаче сообщений через микроядро по сравнению с классическим подходом.

Можно подробно рассмотреть принципы организации и функции микроядра Mach по двум причинам. Во-первых, микроядро по определению содержит базовые механизмы, имеющиеся внутри любой операционной системы, поэтому знакомство с этими механизмами в чистом виде полезно и для изучения любой конкретной ОС.

Во-вторых, микроядра лицензируются и используются как готовый программный продукт в качестве основы для построения коммерческой сетевой операционной системы. Сейчас имеется несколько коммерческих реализаций операционных систем на основе микроядра Mach (NextStep фирмы Next, UNIX BSD, OSF/1 v.1.3), а также проводится ряд работ по использованию этого ядра. Так как свойства микроядра в значительной степени определяют свойства ОС, построенной на его основе, то знание микроядра помогает в оценке характеристик использующей его ОС.


6.2.1.   История Mach

Система Mach имела в качестве предшественницы систему RIG - Rochester Intelligent Gateway, начало разработки которой пришлось на 1975 год. RIG была написана для 16-битового мини-компьютера компании DataGeneral под названием Elipce. Целью этой разработки была демонстрация возможностей  структурирования операционной системы и представления ее в виде набора процессов, которые могут взаимодействовать между собой путем передачи сообщений, в том числе и по сети. Затем эта операционная система была улучшена путем добавления средств защиты и средств прозрачной работы в сети и получила название Accent (в 1981 году, в университете Карнеги-Меллона). В 1984 году она уже использовалась на 150 компьютерах PERQ - ранних графических станциях, но проиграла соревнование с UNIX'ом. Это обстоятельство побудило создать третье поколение ОС, использующей механизм обмена сообщениями. Этот проект и был назван Mach. В связи с тем, что Mach проектировалась как система, совместимая с UNIX, планировалась поддержка большого количества приложений для UNIX. Кроме совместимости с UNIX, в Mach были введены и другие усовершенствования, включая нити, улучшенные механизмы межпроцессного взаимодействия, поддержка многопроцессорных систем, улучшенная виртуальная память и др. В это время агентство DARPA искало операционную систему для поддержки мультипроцессоров. Выбор был сделан в пользу университета Карнеги-Меллона, и работы над ОС Mach были продолжены. Было решено сделать эту систему совместимой с 4.2BSD путем комбинации Mach и 4.2BSD в виде единого ядра. Хотя этот подход привел к большому ядру, он гарантировал абсолютную совместимость. Первая версия Mach была реализована в 1986 году для VAX11/784, 4-х процессорной машины. Вскоре эта ОС была перенесена на IBM PC RT и Sun 3. К 1987 году Mach выполнялась также на мультипроцессорах Encore и Sequent. Хотя Mach и имела сетевые средства, ее скорее можно было отнести к ОС отдельной машины или мультипроцессора, а не к сетевой распределенной прозрачной системе. Вскоре была создана организация производителей компьютеров OSF (IBM, DEC, Hewlett Packard) для того, чтобы отобрать контроль над ОС UNIX у ее собственника AT&T. Они выбрали Mach 2.5 в качестве основы для их первой операционной системы OSF/1. Хотя Mach 2 и OSF/1 содержали большое количество кода Berkeley и AT&T, была надежда, что OSF, по крайней мере, сможет контролировать направление развития UNIX. В 1988 году ядро Mach 2.5 было большим и монолитным из-за того, что содержало большое количество кода Berkeley UNIX. А в 1989 году университет Карнеги-Меллона удалил весь код BSD UNIX из ядра и поместил его в пользовательское пространство. То, что осталось, было микроядром, состоящим из чистого кода Mach. Эта версия 3.0 и используется как основа последующих версий OSF.

6.2.2.   Цели Mach

ОС Mach значительно изменилась со времени ее первой реализации в виде RIG. Цели проекта также изменились со временем. На текущий момент основные цели выглядят так:

1.                  Обеспечение базовых функций для создания других операционных систем (например, UNIX).

2.                  Поддержка больших разреженных адресных пространств.

3.                  Обеспечение прозрачного доступа к сетевым ресурсам.

4.                  Поддержка параллелизма как в системе, так и в приложениях.

5.                  Обеспечение переносимости Mach на различные типы компьютеров.

6.2.3.   Основные концепции Mach

Микроядро Mach было разработано в качестве основы, на базе которой можно эмулировать UNIX и другие ОС. Эта эмуляция осуществляется программным уровнем, который работает вне ядра, в пользовательском пространстве (рис. 6.1). Следует отметить, что несколько эмуляторов могут работать одновременно, так что можно выполнять программы 4.3BSD, System V и MS-DOS на одной машине в одно и то же время.

Ядро Mach, подобно другим микроядрам, обеспечивает управление процессами, управление памятью, коммуникации и функции ввода-вывода. Функции управления файлами, каталогами и другие традиционные для операционных систем функции выполняются в пользовательском пространстве. Идея построения ядра Mach состоит в обеспечении механизмов, необходимых для работы системы, но стратегия использования этих механизмов реализуется на уровне пользовательских процессов.

Ядро управляет пятью главными абстракциями:

1.                  Процессы

2.                  Нити

3.                  Объекты памяти

4.                  Порты

5.                  Сообщения

Рис. 6.1. Абстрактная модель эмуляции UNIX на основе Mach

Кроме этого, ядро работает и с некоторыми другими абстракциями, или связанными с указанными, или менее важными.

Процесс - это, в основном, среда, в которой происходит выполнение. Он имеет адресное пространство, содержащее текст программы и данные, и обычно один или более стеков. Процесс - это базисная единица для распределения ресурсов. Например, коммуникационный канал всегда принадлежит одному процессу.

Нить в Mach является единицей выполнения. Она имеет счетчик команд и набор регистров, связанных с ней. Каждая нить является частью точно одного процесса. Процесс, состоящий из одной нити, подобен традиционному (например, как в UNIX) процессу.

Концепцией, уникальной для Mach, является введение понятия объект памяти (memory object), представляющий собой структуру данных, которая может быть отображена в адресное пространство процесса. Объекты памяти занимают одну или несколько страниц и образуют основу для системы управления виртуальной памятью Mach. Когда процесс ссылается на объект памяти, который не представлен в физической памяти, это вызывает страничное прерывание. Как и в других ОС, ядро перехватывает страничное прерывание. Однако в отличие от других систем, ядро Mach для загрузки отсутствующей страницы посылает сообщение серверу пользовательского режима, а не самостоятельно выполняет эту операцию.

Межпроцессное взаимодействие в Mach основано на передаче сообщений. Для того, чтобы получить сообщение, пользовательский процесс просит ядро создать защищенный почтовый ящик, который называется порт. Порт хранится внутри ядра и способен поддерживать очередь упорядоченного списка сообщений. Очереди не имеют фиксированной длины, но в целях управления потоком для каждого порта отдельно устанавливается пороговое значение в n сообщений, так что всякий процесс, пытающийся послать еще одно сообщение в очередь длины n, приостанавливается для того, чтобы дать порту возможность очиститься.

Процесс может предоставить другому процессу возможность посылать (или получать) сообщения в один из принадлежащих ему портов. Такая возможность реализуется в виде мандата (capability), который включает не только указатель на порт, но и список прав, которыми другой процесс обладает по отношению к данному порту (например, право выполнить операцию ПОСЛАТЬ - SEND). Все коммуникации в Mach используют этот механизм.

6.2.4.   Сервер Mach BSD UNIX

Как уже было сказано выше, разработчики системы Mach модифицировали Berkeley UNIX для работы в пользовательском пространстве в форме прикладной программы. Такая структура имеет несколько преимуществ по сравнению с монолитным ядром. Во-первых, система упрощается за счет разделения на часть, которая выполняет управление ресурсами (ядро), и часть, которая обрабатывает системные вызовы (UNIX-сервер), и ею становится легче управлять. Такое разделение напоминает разделение труда в операционной системе VM/370 мейнфреймов IBM, где ядро эмулирует набор "голых" 370-х машин, на каждой из которых реализована однопользовательская операционная система.

Во-вторых, за счет помещения UNIX'а в пользовательское пространство его можно сделать в высокой степени машинно-независимым. Все машинно-зависимые части могут быть удалены из UNIX'а и скрыты внутри ядра Mach.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.