Рефераты. Обучающая система методам компактной диагностики p> . Неисправности типа «Короткое замыкание»;

. Инверсные неисправности;

. Наиболее общей и часто применяемой моделью логических неисправностей являются константные неисправности: константный нуль и константная единица, что означает наличие постоянного уровня логического нуля или логической единицы на одном из полюсов логического элемента. Такая модель неисправностей часто называется классической и широко используется для описания других типов неисправностей. Неисправности типа «Короткое замыкание» появляются при коротком замыкании входов и выходов логических элементов.

Инверсные неисправности описывают физические дефекты ЦС, приводящие к появлению фиктивного инвертора по входу или по выходу логического элемента.
Инверсные неисправности в совокупности с константными, в ряде случаев используются для построения полной модели неисправной цифровой схемы.

1.3 Генераторы тестовых последовательностей.

Классическая стратегия тестирования цифровых схем основана на формировании тестовых последовательностей, позволяющих обнаруживать заданные множества их неисправностей. Для реализации генератора тестовой последовательности желательно использовать простейшие методы, позволяющие избежать сложной процедуры их синтеза. К ним относятся следующие алгоритмы:
> формирование всевозможных тестовых наборов, то есть полного перебора двоичных комбинаций. В результате применения подобного алгоритма генерируются счётчиковые последовательности;
> формирование псевдослучайных тестовых последовательностей;
> формирование случайных тестовых наборов, с требуемыми вероятностями единичного и нулевого символов по каждому входу цифровой схемы.

Основным свойством вышеперечисленных алгоритмов является то, что в результате их применения воспроизводятся последовательности очень большой длины.

Для процесса обучения были выбраны два первых алгоритма построения генераторов тестовых последовательностей. И разработаны два модуля для эмуляции работы генераторов: модуль эмуляция генератора счетчиковой последовательности; модуль эмуляции работы многоканального генератора М- последовательности, позволяющий генерировать псевдослучайную последовательность и сравнительно просто регулировать ее максимальную длину и число каналов в зависимости от числа входов цифровой схемы.

Генератор М-последовательности.

В аппаратурных псевдослучайных датчиках и узлах ЭВМ при генерировании
ПСЧП с равномерным распределением наиболее часто используется метод, который заключается в получении линейной двоичной последовательности по рекуррентному выражению:

[pic] где i - номер такта; [pic]символы выходной последовательности;
[pic]постоянные коэффициенты. При соответствующем выборе коэффициентов {(к} генерируемая числовая последовательность имеет максимальную (для данного m) величину периода и называется М-последовательностью. Одним из главных преимуществ метода генерирования ПС – последовательностей максимальной длины является простота его реализации.

Генератор М-последовательности может быть построен двумя методами, отличающимися способом включения сумматоров по модулю два: они могут включаться как в цепь обратной связи генератора, так и в меж разрядные связи элементов памяти регистров сдвига.

Структурная схема генератора М – последовательности, построенного по способу включения сумматоров в цепь обратной связи представлена на рис.1.1
Генератор М-последовательности с сумматорами по модулю два, стоящими в цепи обратной связи: аi,ai-1,ai-2,…ai-m – символы последовательности; (i – коэффициенты, определяющие вид обратной связи.

Алгоритм размножения М-последовательности.

Для того, чтобы обеспечить различные режимы испытаний, генераторы испытуемых сигналов должны удовлетворять ряду требований (многоканальность, быстродействие, достаточная длина периода и т.д.). В основе наиболее перспективного метода построения быстродействующего параллельного генератора псевдослучайных последовательностей испытательных сигналов лежит идея использования ( в качестве независимых последовательностей для формирования разрядов очередного кода) участков одной и той же последовательности. В данном случае генерирование различных участков осуществляется с помощью (-входовых сумматоров по модулю два, т.е. (({2,m}, где m- разрядность регистра сдвига. Соединения сумматоров по модулю два с разрядами регистра сдвига определяются набором коэффициентов
(i(1)({0,1}(i=1,2,3,..m), значения которых зависят от величины сдвига l(l=1,2,3,…) и вида порождающего полинома.

Методика выбора коэффициентов (i(1), однозначно определяющих связи многовходового сумматора по модулю два, описывается на итерационном подходе, когда на основании (i(h), по расчётным соединениям находятся
(i(1)(h=1,2,….h>m преобразуется к более простому виду:

[pic] которое может служить основным аргументом для обоснования высокой эффективности сигнатурного анализа.

В качестве более точной меры оценки достоинств сигнатурного анализатора рассмотрим распределение вероятности необнаружения ошибки в зависимости от её кратности (, т.е. определим значение [pic] где (=1,2,3,...2m-1.

Можно показать, что [pic]не обнаруживаемых ошибок определяется следующим образом:

[pic] а количество возможных ошибок из ( бит определяется как [pic]

И тогда выражение для вероятности не обнаружения ошибки принимает вид:

[pic],

[pic]

Анализ показывает, что для достаточно больших m [pic], т.е. при m>7 вероятность обнаружения ошибки [pic]практически равняется единице.

Достоверность метода счёта единиц.

В качестве характеристики, позволяющей оценить метод компактного тестирования целесообразно использовать распределение вероятностей не обнаружения ошибки в зависимости от её кратности (:

[pic] где ( -кратность ошибки, [pic]- вероятность возникновения ошибки кратности (; [pic]- вероятность не обнаружения возникшей ошибки кратности
(, которая определяется как отношение количества не обнаруживаемых ошибок кратности ( к общему количеству возможных ошибок из ( неверных символов в последовательности длиной l.

Значение [pic] определяется видом проверяемой цифровой схемы, множеством возможных её неисправностей, а также типом тестовых последовательностей, причём распределение вероятностей [pic] может иметь совершенно произвольный вид и значительно изменяться в зависимости от возникшей неисправности, вида схемы и тестовой последовательности.

Значение [pic] характеризуется только методом компактного тестирования и позволяет провести его сопоставительную оценку в сравнении с другими методами. Поэтому для различных методов в зависимости от их распределения вероятностей [pic] могут быть получены оценки эффективности контроля ЦС в виде распределения [pic]. Анализ этого вида распределения позволяет принять решение о целесообразности применения того или иного метода компактного тестирования. Причём для упрощения алгоритма принятия решения следует использовать более компактную характеристику, например суммарную вероятность не обнаружения ошибки [pic], вычисляемую как

[pic]

В данном случае величина [pic] будет характеризовать тот или иной метод компактного тестирования для вполне конкретного распределения вероятностей
[pic] возникновения неисправностей в зависимости от её кратности.

Глава 3.

Описание программы.

Интерфейс программы состоит из трёх окон:

. Главного - на котором находятся все основные функции программы, элементы цифровой схемы.

. Окна свойств, в котором отображается информация об элементе

. Окно "Конструктор" - в нём строится сама цифровая схема.

Для построения цифровой схемы, необходимо поочерёдно нажимая в панели инструментов, на главной форме, на нужный элемент и нажимая на форму конструктора создавать элементы, из которых будет состоять цифровая схема.
Элементы можно создавать и размещать в любом порядке, а также добавлять и удалять в уже созданной ЦС.

Чтобы соединить входы и выходы элементов линией, необходимо:

. При наведении курсора мыши на входную ножку элемента, ножка выделяется и нажимая левую кнопку тянем до выходной ножки другого элемента. Как только выходная ножка которую мы хотим соединить также выделится отпускаем кнопку мыши. В результате будет создана линии, соединяющая входную и выходную ножки.

Также соединяется линией точка с входными и выходными ножками элементов.

Для просмотра свойств элементов, достаточно выделить элемент и свойства элемента отобразятся в окне свойств.

В этом окне можно изменять число входов или число выходов, вводить ошибки. В нём также отображается тип элемента и порядковый номер на схеме.
Если в схеме используется генератор М-последовательности, то для него необходимо ввести примитивный неприводимый полином. Для этого в меню выбираем раздел Полином -->М-генератор и в появившемся окне составляем полином.

Для сигнатурного анализатора, также необходимо составить полином. Из того же пункта меню Полином выбираем Сигнатурный анализатор.

Когда схема будет создана, нажимаем на Анализ. В появившемся окне отображается сигнатура, число единиц, вероятности появления единиц и нулей.

Экспериментальная часть.

В качестве примера рассмотрим схему мультиплексора и получим сигнатуру.
В качестве тестового генератора будем использовать генератор М- последовательности и полином вида:

[pic]

Для сигнатурного анализатора выберем полином также седьмой степени.

В результате моделирования, получим: на входе: на выходе

Сигнатура и число единиц:

Далее, вводим ошибки в схему через окно "Свойства элементов", которое находится в левой части экрана.

Затем из меню Диагностика выбираем "Поиск неисправностей"

В результате мы локализовали неисправные элементы и типы ошибок.
-----------------------

ГТП


Моделирование ЦС

Блок ошибок

Блок отображения и обработки выходных реакций и сжатия информации

Блок определения [pic]

Схема сравнения

Эталонные данные

Результат тестирования

[pic]

[pic]



Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.