Рефераты. Модель тракта прослушивания гидроакустических сигналов

4) Набор реализаций с перекрытием 25 % точек;

5) БПФ – n-точечное быстрое преобразование Фурье по всем М каналам. Частотное разрешение системы df=fd/n;

6) ФПК – формирование пространственного канала: осуществляется в частотной области умножением на фазирующие коэффициенты и суммированием выходов задержанных реализаций. Получаем один выход в полосе от 1 до 8 кГц, границам полосы частот соответствуют номера частотных отсчетов Кн=[1000/df]=21 и Кв=[8000/df+0.5]=171.

7) Вырезание полосы частот, соответствующей заданному оператором номеру частотного диапазона Nd (от 1 до 3):

I чд - от Кн= 21 до Кв=53,

II чд - от Кн= 42 до Кв=106,

III чд - от Кн= 85 до Кв=171;

8) Сдвиг полосы в область от 0.3 кГц (для удобства оператора); сдвиг осуществляется на величину:

4Δf = 187 Гц - в I чд,

32Δf = 1497 Гц – во II чд,

76Δf = 3556 Гц – в III чд;

9) Умножение на спектральное окно, в нашем случае окно Ханна с числом точек, зависящим от ширины частотного диапазона:

K=53 – в I чд,

K=81 – во II чд,

K=99 – в III чд ;

10) Восстановление сигнала во временную область с использованием процедуры ОБПФ на те же самые n точек;

11) Отбрасывание некорректных отсчетов – по n/8 точек в начале и в конце реализации;

12) Стыковка реализаций;

13) Цифро-аналоговое преобразование (ЦАП) с частотой дискретизации 24000кГц;

14) Вывод результатов на динамик или выносные аудиосистемы.


4.2 Структурная схема программного макета тракта прослушивания

В соответствии с описанными в предыдущих разделах алгоритмами функционирования тракта прослушивания для выбора параметров и уточнения алгоритмов обработки в среде инженерных расчетов MatLab была написана моделирующая работу этого тракта программа. Язык программирования среды MatLab является наиболее удобным для работы с матричными структурами данных, а также содержит большое число вспомогательных функций и операций над матрицами и многомерными массивами данных. Кроме того, MatLab обладает широкими возможностями по графическому отображению результатов.

Структурная схема программного макета тракта прослушивания приведена на рисунках 19 и 20.

Программный макет тракта прослушивания включает в себя следующие функциональные блоки:

1.     Блок задания параметров антенной решетки и параметров цифровой обработки в тракте ШП.

Задаются основные параметры системы, включая:

- Скорость звука,

- Частота дискретизации,

- Задание мнимой единицы,

- Количество элементов АР,

- Шаг между приемными элементами АР,

- длительность формируемого сигнала,

-Количество частотных диапазонов,

-Число точек БПФ,

- величина перекрытия входных выборок,

-Нижняя полоса и верхняя полоса всего тракта, и разбивка на 3 диапазона.

2.     Блок задания параметров сигнала и параметров обработки в тракте прослушивания.

В этом блоке происходит выбор типа сигнала:

-тональный,

-амплитудно-модулированный тональный,

- амплитудно-модулированный шумовой;

Задаются:

- несущая частота сигнала,

-частота модуляции,

-глубина модуляции,

-число тактов обработки,

-частотный диапазон прослушивания,

-угол падения фронта волны на элементы АР,

- частотный сдвиг для выбранного ЧД,

- степень расширения полосы частот (количество отсчетов),

- спектральное окно.

3.     Формирование процессов на выходе приемных элементов АР. Имитационное моделирование входного процесса включает в себя задание моделей полей сигнала, формирование временной реализации сигнала, фильтрацию ее в заданном диапазоне частот, формирование плоского фронта сигнала на элементах АР.

4.     Перечень процедур, проводимых в этом функциональном блоке:

-       расчет координат приемных элементов в АР,

-       формирование сигнала заданной частоты в поле,

-       расчет временных задержек фронта волны сигнала исходя из направления его прихода,

-       формирование дискретизированных с частотой fd=24000Гц сигналов на приемных элементах АР.

5.      Функциональные программы расчета выходного эффекта тракта прослушивания:

-      Последовательный набор по n временных отсчетов сигналов на элементах АР с перекрытием 25% - так называемый такт обработки;

Дальнейшие процедуры выполняются на каждом такте обработки:

-      Переход в частотную область с использованием процедуры БПФ;

-      Формирование ПК на частотах рабочей полосы;

-      Вырезание полосы частот выбранного частотного диапазона (ЧД);

-      Сдвиг полосы частот на заранее рассчитанное для каждого ЧД число спектральных отсчетов;

-      Умножение отсчетов спектра сформированного канала на спектральное окно;

-      Восстановление сигнала во временной области (процедура обратного ПФ);

-      Отбрасывание некорректных отчетов из реализации – по n/8 отсчетов в начале и в конце реализации;

-      набор реализации большой длительности.

6. Выдача сигнала на ЦАП, вычисление спектра сигнала с высоким разрешением по частоте, графическое представление результатов обработки.


4.3 Расчет выходных эффектов тракта


Сформированный указанным выше способом сигнал на элементах антенны «нарезается» на временные фрагменты длиной n=512 точек с учетом перекрытия, которое вводится в модель тракта как параметр. Каждый фрагмент подвергается процедуре БПФ, в результате чего получаются спектры процессов на выходе приемных элементов. Из получившегося набора частот в дальнейшую обработку берутся только номера частот fk, соответствующие заданной полосе обработки (fн÷fв).

Как было показано выше, вырезание полосы фильтром с прямоугольной частотной характеристикой вносит дополнительные искажения в восстановленный сигнал. Поэтому в модели предусмотрено расширение полосы обработки от значения (0,3-4,5) кГц до (0,05-5) кГц.

На следующем этапе происходит формирование канала наблюдения в частотной области путем сложения спектров реализаций с приемных элементов АР, умноженных на заранее рассчитанные фазирующие коэффициенты на это направление.


Рис. 19 Структурная схема программного макета тракта прослушивания

Рис.20 Обработка в канале прослушивания

После ФХН выполняется вырезание полосы частот выбранного частотного диапазона и сдвиг ее на заранее рассчитанное для каждого ЧД число спектральных отсчетов. Затем проводится процедура ОБПФ, на выходе которой получаем временную реализацию. Как было показано ранее, для устранения эффектов, вызванных вырезанием полосы частот, необходимо перед восстановлением сигнала во временную область ввести частотное окно, вид которого в модели можно выбирать из заранее созданных файлов либо из имеющегося в системе MatLab банка частотных фильтров, а также задавать их параметры. В модели тракта прослушивания параллельно формируются и обрабатываются сигналы, восстановленные с применением частотного окна и без него.

Восстановленный сигнал содержит в себе некорректные отсчеты. Фазирующие коэффициенты, используемые при формировании веера пространственных каналов, таковы, что длительность “испорченных” фрагментов реализации в начале и в конце ее приблизительно одинакова. Поэтому из реализации исключаются некорректные отсчеты в начале и в конце кусочка реализации длиной n отсчетов.

Для сокращения времени моделирования, а также экономии внутренней памяти MatLab сигнал на приемных элементах АР моделируется на ограниченном временном интервале, причем длина этого интервала должна быть достаточной для формирования оценки спектральной плотности мощности процесса с требуемым частотным разрешением. Длина такой реализации в программе определяется автоматически с учетом необходимого количества точек перекрытия и количества точек.



5 Результаты расчетов


Чтобы сформировать сигнал на элементах АР нужно рассчитать задержки на каждом элементе и сымитировать их.

Исходя из заданных нами параметров, система формирует приходящий на АР сигнал под определенным углом.


Рис.22 Приход сигнала под углом на элементы АР


Обработка в канале прослушивания

Блок основных вычислительных операций подробно будет рассмотрен далее.

Вывод графических и аудио результатов

После обработки мы можем прослушать и наглядно увидеть графики сигналов, изначально пришедших на элементы АР, и вычисляем спектры восстановленных сигналов с высоким частотным разрешением, частное разрешение системы определяется длительностью реализации взятой в обработку.

По сформированным входным воздействиям реализуется обработка в канале прослушивания .

Сформированный сигнал на элементах АР

Исходя из заданных нами параметров, система формирует приходящий на АР сигнал под определенным углом.

БПФ с перекрытием

Выполняется БПФ с перекрытием, перекрытие задается произвольным, либо кратно числу точек БПФ (как и выяснилось в результате моделирования), но задать перекрытие мы можем произвольно. Выполняется перекрытие на каждом приемном элементе АР.

Умножение на фазирующие коэффициенты

Этап процедуры формирования. внесение задержек в частотной области

Суммирование по элементам АР

Вырезание полосы

Поскольку у нас частотное окно имеет спады на краях диапазона, мы расширяем полосу сигнала, чтобы не сильно зарезать энергетику сигнала.

Сдвиг

В первом частотном диапазоне полоса частот 1-2,5 кГц это соответствует спектральным отсчетам: К нижнее =21, К верхнее =53. В соответствии с такой закономерностью сдвигать при выбранной величине перекрытия мы можем только порциями по 4Δf значит первый спектральный отсчет ,для того чтобы попасть в полосу 3-3.5 кГц должен быть сдвинут на 4 отсчетов . Соответственно для второго диапазона 2-5 кГц : К нижнее =42, К верхнее =107 , 32 отсчетов. Для третьего 4-8 Кгц: К нижнее =85, К верхнее =171, 76 отсчетов.

Рассчитывать коэффициент сдвига будем проводить по формуле



Где нижнее значение частотного диапазона,

= коэффициент фильтра,- число сдвига спектральных отсчетов.

7 – коэффициент минимальной частоты переноса спектра = 300 ГЦ



Умножение на спектральное окно

Для каждого из трех диапазонов мы выбираем свои параметры фильтра . В данной случае будем менять лишь параметры фильтра Ханна (53 81 99). Полученные по формуле:


K=kB-kH+2*kl+1


ОБПФ

Обратное преобразование Фурье с количеством точек равным в БПФ

Отбрасывание некорректных отсчетов

Формирование делалось таким образом, чтобы некорректные отчеты равномерно распределялись вначале и в конце реализации поэтому половину отчетов мы убираем из начала реализации и из конца.

Стыковка реализаций

В результате получаем реализацию большой длительности, которая подвергается преобразованию Фурье.

MATLAB - это интерактивная система, в которой основным элементом данных является массив. Это позволяет решать различные задачи, связанные с техническими вычислениями, особенно в которых используются матрицы и вектора, в несколько раз быстрее, чем при написании программ с использованием "скалярных" языков программирования, таких как Си или Фортран.

В результате работы программы мы получаем следующие результаты :

Для первого частотного диапазона (1-2.5) Khz

Каждый частотный диапазон соответствует спектральным отсчетам k1=[21] k2=[53]

Угол прихода сигнала берем равный Pi/4

Сдвиг полосы в область от 0.3 , 4Δf = 187 Гц

Умножение на спектральное окно K=53

Частота сигнала 2000 Гц


Спектр исходного сигнала                            Спектр восстановленного сигнала

                                                                  со сдвигом

        

Исходный сигнал во временной области Восстановленный сигнал во

временной области


Для второго частотного диапазона (2-5) Khz

Каждый частотный диапазон соответствует спектральным отсчетам k2=[42] k2=[107]

Угол прихода сигнала берем равный Pi/4

Сдвиг полосы в область от 0.3 , 32Δf = 1500 Гц

Умножение на спектральное окно K=81

Частота сигнала 3500 Гц


Спектр исходного сигнала                            Спектр восстановленного

сигнала со сдвигом

Исходный сигнал во                              Восстановленный сигнал

временной области                                во временной области


Для третьего частотного диапазона (4-8) Khz

Каждый частотный диапазон соответствует спектральным отсчетам k2=[85] k2=[171]

Угол прихода сигнала берем равный Pi/4

Сдвиг полосы в область от 0.3 , 76Δf = 3570 Гц

Умножение на спектральное окно K=99

Частота сигнала 5000 Гц


Спектр исходного сигнала                            Спектр восстановленного

сигнала со сдвигом

Исходный сигнал во временной                   Восстановленный сигнал

области                                          во временной области


Виды частотных окон Ханна ИПХ фильтров Ханна

для трех диапазонов для трех диапазонов


Для первого диапазона (1-2.5) кГц

Для второго диапазона (2-5) кГц

Для третьего диапазона (4-8) кГц.



Заключение

В данной работе была разработана структура тракта прослушивания гидроакустических сигналов на выходе сформированного пространственного канала (канала наблюдения) в тракте шумопеленгования с использованием многоэлементной антенной решетки для трех частотных диапазонов.

Разработан программный макет тракта прослушивания, удовлетворяющий всем требования для моделирования сигналов и процессов их обработки в тракте ШП.

Установлена взаимосвязь основных параметров тракта прослушивания с базовыми параметрами тракта ШП.

Требования задания полностью выполнены и подтверждены графиками, полученными в результате моделирования.

 


Список литературы


1.       Липатов В.В. Электромагнитные поля в морской воде [Книга]. - Ленинград : ГМТУ, 1990.

2.       Рогожников К. И. Морские информационные системы [Книга]. - Санкт-Петербург : АМУР-ПРЕСС, 2002. - стр. 106.

3.       Лоскутова Г.В., Полканов К.И. Пространственно-частотные и частотно – волновые методы описания и обработки гидроакустических полей. [Книга]. - Санкт-Петербург .: Наука, 2007.-239с.

4.       Ю.А.Корякин, С.А. Смирнов, Г.В.Яковлев. Корабельная гидроакустическая техника: состояние и актуальные проблемы.- СПб.:Наука.-410с.

5.       Марпл-мл.С.Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990.

6.       Смарышев М.Д. Направленность гидроакустических антенн. Л. Судостроение, 1973.

7.       Гусев В.Г. Системы пространственно-временной обработки гидроакустической информации. Л.: Судостроение, 1988 г.

8.       Дьяконов В.П., MATLAB 6 универсальная интегрированная система компьютерной математики. С-Пб: Питер, 2001 г.

9.       Лазарев Ю.А. Моделирование процессов и систем в MATLAB. СПб.: Питер, 2005 г

10.   Поршнев С.В. MATLAB 7. Основы работы и программирования. М.: Бином-Пресс, 2006 г.

11.   Сергиенко А.Б. Цифровая обработка сигналов. СПб.: Питер, 2003 г.



Приложение 1. Текст программы в Matlab


fd=24000;

dt=1/fd;

t=(0:dt:2);

d=0.1;

c=1500;


n=512;

M=30;

jk=sqrt(-1);

df=fd/n;

fk=df*(0:n-1);


f=input ('введите частоту сигнала (1-2.5)kHz-I чд,(2-5)kHz-II чд,(4-8)kHz-III чд =');

fk0=floor(f/df+0.5);

nd=input('Введите номер диапазона=');

k1=[21 42 85];

k2=[53 107 171];

k0_=[7 10 7];

kl_=[10 8 6];

kH=k1(nd);

kB=k2(nd);

kl=kl_(nd);

k0=k0_(nd);

fm=5;

am=0.0;

al=-pi/4;

s=cos(2*pi*f*t);

s=cos(2*pi*f*t).*(1+am*cos(2*pi*fm*t));

tau0=d/c*sin(al);

tau=(0:M-1)'*tau0;


Ttau=repmat(tau,1,size(t,2));

%sound (s,fd)

T=repmat(t,M,1);

x=cos(2*pi*f*(T-Ttau)).*(1+am*cos(2*pi*fm*(T-Ttau)));

fk1=[fk(1:n/2+1) fk(n/2+2:n)-fd];

kolf=exp(jk*2*pi*tau*fk1);

fo=zeros(1,n);

fo(kH-kl:kB+kl)= hann (kB-kH+2*kl+1);

Ro=repmat(fo,M,1);

Per=1*n/2;

n_per=n-Per;

K=Per/2+1;



for i=1:100;

In=(i-1)*n_per+1;

Ik=In+n-1;

Y0=fft(x(:,In:Ik),n,2);

Y=Y0.*Ro;

z=sum(Y.*kolf,1);

V=zeros(1,n);

V(k0:k0+kB-kH+2*kl)=z(kH-kl:kB+kl);


U=ifft(z,n);

Ik1=i*n_per; In1=(i-1)*n_per+1;

w(In1:Ik1)=real(U(K:K+n_per-1));

U=ifft(V,n);

w1(In1:Ik1)=real(U(K:K+n_per-1));

end



nBCE=size(w,2);

figure,plot(fd/nBCE*(0:nBCE-1),20*log10(abs(fft(w))));

xlabel('Гц')

ylabel('дБ')

figure, plot (w)

xlabel('T/dt')

sound (w,fd);

figure,plot(fd/nBCE*(0:nBCE-1),20*log10(abs(fft(w1))));

xlabel('Гц')

ylabel('дБ')

figure, plot (w1)

xlabel('T/dt')

sound (w1,fd);


figure,plot(abs(ifft(fo,512))),grid on;

figure,plot (fo);


Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.