Рефераты. Мікропроцесорний АЦП порозрядного врівноваження із ваговою надлишковістю, що калібрується

Рисунок 1.1 – Структурна схема АЦП порозрядного врівноваження з ваговою надлишковістю


Для АЦП на основі "золотої пропорції" відносна похибка ваг розряду за рахунок технологічних, температурних, часових факторів може досягати до 23,6% [2], що не приведе до пропусків кодів. Таким чином, є можливість, знаючи точні значення реальних ваг розрядів, що беруть участь у перетворенні, одержати точне значення вхідного аналогового сигналу. Задача зводиться до визначення реальних ваг розрядів у спеціальному режимі роботи АЦП, названому калібруванням.

Використання НПСЧ при задані ваг розрядів ЦАП, дозволяє, за рахунок наявності зон перекриття між сусідніми розрядами отримати нерозривну передатну характеристику навіть за умови наявності значних відхилень ваг розрядів [3]. Головним недоліком ЦАП, побудованих з використанням НПСЧ, вважається збільшення кількості розрядів порівняно з двійковим ЦАП, що теоретично мало б призводити до збільшення часу врівноваження. Але, як було доведено в працях професора О.Д.Азарова, швидкодія таких перетворювачів може бути на порядок більша за двійкові без втрати точності за рахунок компенсації динамічних похибок першого та другого роду [4].

Основою системи числення [5] називається співвідношення ваг сусідніх розрядів


.

Для двійкової системи , а для надлишкових систем . До НПСЧ з дробовими вагами розрядів зокрема відносяться так звані системи числення золотої - пропорції[6].У системах числення золотої -пропорції, будь-яке натуральне число N* можна зобразити у вигляді


 1.1


де



– вага -го розряду або -а ступінь золотої -пропорції. Відповідно при =0 НПСЧ вироджується у двійкову систему числення, =1 – золота пропорція,  – одиничний код. Значення  для золотої пропорції рівне 1,618.

Застосування вказаної системи числення в порозрядних АЦП дозволяє виконувати самокалібрування виключно у цифровій формі. Це в свою чергу дозволяє відмовитися від введення додаткових аналогових вузлів та блоків для реалізації процедури калібрування ваг розрядів. Використання таких додаткових вузлів у пристрої значно ускладнює аналогову частину АЦП. Разом з тим, калібрування ваг розрядів у цифровій формі в АЦП на основі НПСЧ дозволяє максимально використати можливості цифрових обчислювальних пристроїв, замінити аналогові вузли цифровими і тим самим спростити аналогову частину перетворювачів, а також знизити її вартість.


2. Розробка функціональної схеми


2.1 Вибір мікроконтролера та огляд його архітектури


Сучасні радіоелектронні пристрої побудовані на МК. Це дозволяє спростити схему радіоелектронного пристрою, зробити її більш універсальною, що дозволяє змінюючи програму МК покращувати її споживчі та експлуатаційні характеристики.

Розробнику мікропроцесорних пристроїв приходиться вирішувати ряд характерних задач: на якому процесорі будувати систему, які периферійні пристрої (таймери, послідовні і паралельні порти, АЦП, ЦАП, і т. д. ) вибрати, який блок живлення, скільки коштує розробка.

До недавнього часу у розробників не було широкого вибору. Сімейство однокристальних мікро–EОM Intel 8051, здавалось, перекривало по можливостям задачі, які найбільш часто зустрічаються.

Сьогодні на ринку з’явився цілий ряд фірм зі своїми пропозиціями до однокристальних восьмирозрядних мікро – EОM. В першу чергу це мікро - ЕОМ сімейства Z86 фірми Zilog, МС 68 (Motorola), РІС 16/17 (Microchip). Менш відомі – мікро – ЕОМ ST62 (Thomson) та СОР800(National).

Для того, щоб вибрати з цього різноманіття найбільш вдалу базу для майбутнього мікропроцесорного пристрою, необхідно мати порівняльні характеристики всіх вище перерахованих однокристальних мікро – ЕОМ. Однак кінцевий вибір залежить від багатьох факторів. В першу чергу, це прив’язаність розробника чи традиції, далі – складність вирішуваної задачі ціна однокристальної мікро – ЕОМ.

Цікаве опитування було проведено серед відвідувачів сайту «Телесистеми». Учасники могли відповісти на питання: “Якому мікроконтролеру ви віддаєте найбільшу перевагу?“ Голоси розподілилися таким чином (таблиця 2.1): найбільш популярними стали МК архітектура AVR ( розробка Atmel) і класичної архітектури MCS-51 (розробка Intel).

Популярна також структура PIC, розроблена Microchip. Малопопулярні МК фірми Zilog типу Z8 — виключно із-за одноразової структури програмування. Технічні параметри приблизно однакові, показники надійності — теж. Залишаються тільки міркування чисто фінансового характеру. І ось тут відмінності істотні. Наприклад, ціна МК фірми Intel, в 2, а то і в 3 рази вище за ціну МК фірми Atmel.


Таблиця 2.1 – Статистика опитування на сайті #"1.files/image013.jpg">

Рисунок 2.1 – Блок схема мікроконтролера AT90S2333


До складу мікроконтролера входять:

генератор тактового сигналу (GCK);

процесор (CPU);

постійний запам'ятовуючий пристрій для збереження програми виконаний за технологією Flash (FlashROM);

оперативний запам'ятовуючий пристрій статичного типу для збереження даних (SRAM);

постійний запам'ятовуючий пристрій для збереження даних, виконаний за технологією EEPROM, (EEPROM);

набір периферійних пристроїв для вводу/виводу даних і керуючих сигналів, і виконання інших функцій.

До складу процесора (CPU) входять:

лічильник команд (PC);

арифметико-логічний пристрій (ALU);

блок регістрів загального призначення (GPR, General Purpose Regіsters) і інші елементи.

Крім регістрів загального призначення в мікроконтролері маються регістри спеціальних функцій, що у сімействі AVR називаються регістрами вводу/виводу (І/O Regіsters, IOR). За участю цих регістрів здійснюються:

керування роботою мікроконтролера і окремих його пристроїв;

визначення стану мікроконтролера і окремих його пристроїв;

ввід даних у мікроконтролер й окремі його пристрої.

Кожному регістру присвоєне ім'я, пов'язане з функцією, яку виконує цей регістр. Мікроконтролер AT90S2333 має 20 регістрів вводу/виводу, які іменовані, як:

Port B (PB5..PB0) - Порт B є 6-бітовим двонаправленим портом вводу/виводу з внутрішніми підтягаючими резисторами. Вихідні буфери порту B можуть поглинати струм до 20мА. Якщо виводи PB0..PB5 використовуються як входи і ззовні встановлюються в низький стан, вони є джерелами струму, якщо включені внутрішні підтягаючі резистори.

Port С (PС5..PС0) - Порт С є 6-бітовим двонаправленим портом вводу/виводу з внутрішніми підтягаючими резисторами. Вихідні буфери порту С можуть поглинати струм до 20мА. Якщо виводи PС0..PС5 використовуються як входи і ззовні встановлюються в низький стан, вони є джерелами струму, якщо включені внутрішні підтягаючі резистори.

Port D (PD5..PD0) - Порт D є 8-бітовим двонаправленим портом вводу/виводу з внутрішніми підтягаючими резисторами. Вихідні буфери порту B можуть поглинати струм до 20мА. Якщо виводи PD0..PD7 використовуються як входи і ззовні встановлюються в низький стан, вони є джерелами струму, якщо включені внутрішні підтягаючі резистори.

RESET - вхід скидання. Утримання на вході низького рівня протягом двох машинних циклів (якщо працює тактовий генератор), скидає пристій.

Мікроконтролери сімейства AVR є пристроями синхронного типу. Дії, які виконуються в мікроконтролері, прив'язані до імпульсів тактового сигналу.

Як генератор тактового сигналу (GCK) використовуються:

внутрішній генератор із зовнішнім кварцовим чи керамічним резонатором (XTAL);

внутрішній RC-генератор (ІRC);

внутрішній генератор із зовнішнім RC-колом (ERC);

зовнішній генератор (ЕХТ).

У мікроконтролерів, які мають внутрішній генератор із зовнішнім резонатором. XTAL1 і XTAL2 є входом і виходом інвертуючого підсилювача, на якому можна зібрати генератор тактових імпульсів. Можна використовувати як кварцові, так і керамічні резонатори. Якщо сигнал генератора необхідно використовувати для управління зовнішніми пристроями, сигнал з виводу XTAL2 знімається через одиночний буфер. При подачі зовнішнього тактового сигналу вивід XTAL2 залишається непідключеним, а XTAL1 підключається до виходу зовнішнього генератора.

Процесор (CPU) формує адреса чергової команди, вибирає команду з пам'яті й організовує її виконання.

До складу процесора крім лічильника команд (PC), арифметико-логічного пристрою (ALU) і блоку регістрів загального призначення (GPR) входять:

регістр стану мікроконтролера SREG;

регістр-показник стека SP чи SPL і SPH.

Високопродуктивно AVR ALU з'єднано безпосередньо з усіма 32 швидкодіючими регістрами загального призначення. За один тактовий цикл ALU виконує операцію між регістрами цього реєстрового файлу. Операції ALU підрозділяються на три основні категорії: арифметичні, логічні і бітові [8].

2.2 Вибір додаткових елементів


Структурна схема АЦП порозрядного врівноваження містить в аналоговій частині «надлишковий» ЦАП, що використовується під час перетворення.

Число розрядів , задіяних у надлишковому ЦАП, природно, більше ніж у двійковому  й визначається зі співвідношення:


. (2.1)


Так, для побудови АЦП 14-ти розрядної точності (=14) при α=1,618 потрібен ЦАП на =20 розряду коду "золотої пропорції". Незважаючи на збільшення розрядної сітки, швидкодія АЦП на основі НПСЧ не зменшується, а навпаки, може бути істотно збільшена. Зазначений ефект виникає внаслідок витрати частини надмірності ваг розрядів на автокомпенсацію динамічних похибок із сигналу, що компенсує [8].

Для роботи ЦАП використовується РПН, що забезпечує утворення кодових комбінацій, які створюють компенсуючий сигнал для компаратора в процесі порозрядного врівноваження. Основною складовою РПН є спеціальний регістр – мікросхема AM2504 [7], яка зображена на рисунку 2.2, яка призначена для побудови АЦП, що працюють по принципу послідовного наближення з числом розрядів до 12. Має в своєму складі 4 входи:

С – для подачі тактових імпульсів (спрацювання по зростанню тактових імпульсів), D – інформаційний вхід, Е – дозвіл перетворення та S – вхід “пуск“.

Робота мікросхеми показана на діаграмах C-DO, що зображена на рисунку 2.2.

Рисунок 2.2 – Мікросхема AM2504


При подачі на вхід S логічного 0 по спаду чергового імпульсу відбувається початкова установка тригерів регістра. На виході закінчення перетворення C0 з'являється логічна 1. Такий стан регістра зберігатиметься до тих пір, поки на вході S буде логічний 0.

Після встановлення на вході S логічної 1 перший спад імпульсу негативної полярності виробить запис в тригер регістра з виходами 12 і 12 інформації з входу D і встановить вихід 11 в стан 0, на виходах 10-1 і C0 буде логічної 1.

Спад чергового імпульсу негативної полярності виробить запис інформації з входу D в черговий тригер регістра і встановить наступний за ним вихід в стан 0. Таким чином, на виходах регістра по черзі з'являється логічний 0, вслід за ним - інформація з входу D.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.