Рефераты. Конспект лекций по микропроцессорной технике

Конспект лекций по микропроцессорной технике

КОНСПЕКТ ЛЕКЦИЙ

по дисциплине «Микропроцессорная техника»

Микропроцессорные и программные средства автоматизации.

Микропроцессорный комплект

Серии К1810

Состав: К1810ВМ86 – центральный процессор (16 бит)

ВМ88 – центральный процессор с восьмибитной шиной данных;

ВМ87 – арифметический сопроцессор;

ВМ59 – процессор ввода/вывода;

ГР84 – генератор тактовых импульсов;

ВГ88 – контроллер системной шины;

ВБ89 – арбитр системной шины

ВТ02 – контроллер для подключения динамической памяти объемом

16 Кбайт

ВТ03 - контроллер для подключения динамической памяти объемом

64 Кбайт

ВН54 – интервальный таймер

ВТ37 – контроллер прямого доступа к памяти

ВН59 – программируемый контроллер прерываний

ИР86/87 – шинные формирователи (с инверсией / без инверсии)

ИР82/83 - регистры-защелки (с инверсией / без инверсии)

Микросхема К1810ВМ86 (Intel 8086).

Шестнадцатиразрядный однокристальный МП выполняющий около 2 млн. операций в секунду. Синхронизируется тактовой частотой 25 МГЦ.

Имеет 20-ти разрядную шину адреса, что позволяет обеспечить прямую адресацию 1 Мбайт внешней памяти. Область адресного пространства памяти разбита на сегменты по 64 Кб. Такая организация памяти обеспечивает удобный механизм вычисления физических адресов . ША и ШД мультиплексированы. При организации вычислительных систем их нужно разделить (регистры-защелки). МП может обращаться как к памяти, так и к внешним устройствам.

При обращении к внешним устройствам используются 16 младших линий ША.
Следовательно можно подключить 64 К 8-битных внешних устройств, либо 32 К
16-ти разрядных. МП имеет многоуровневую систему прерываний: 256 векторов прерываний. Данный МП является дальнейшим совершенствованием К580ВМ80.
Система команд сходна, но более расширена. Программное обеспечение легко переводится с одного МП на другой.

Функциональная схема:

См. рис.

В первый такт обмена на AD0-15 устанавливаются младшие 16 бит адреса памяти или адрес внешнего устройства, сопровождается эта информация сигналом ALE. Во втором такте обмена выставляются данные, которые сопровожда- ются сигналом DEN. ALE и DEN управляют регистрами-защелками. AD16/ST3-
AD19/ST6 – мультиплексированные линии адреса состояния.

В первый такт обмена выдается 4 старших разряда адреса памяти, а при обращении к внешнему устройству – нули. Во втором такте выдаются сигналы состояния МП, причем сигналы ST3-ST4 определяют сегментный регистр участвующий в формировании физического адреса.
|ST3 |ST4 |Рег. |
|0 |0 |ES |
|1 |0 |SS |
|0 |1 |CS |
|1 |1 |DS |

Сегментные регистры. Участвуют в формиро- вании физического адреса.

ST5 – дублирует состояние флага разрешения прерываний.
BHE – разрешение старшего байта. Работает совместно с сигналом А0, обеспечивая механизм передачи информации по ШД.
|BHE |A0 |Вид передачи данных |
|0 |0 |Передается 16-ти битное слово |
|0 |1 |Передается старший байт AD8-AD15 |
|1 |0 |Передается младший байт AD0-AD7 |
|1 |1 |Нет обращения |


RD –сигнал чтения.
WR – сигнал записи.
M/IO – обращение к памяти или внешним устройствам.
DT/R – направление передачи информации:

«1» - в МП; «0» - из МП.
INTA, INTR – запрос на маскируемое прерывание (INTA – подтверждение прерывания).
NMI – запрос на немаскируемое прерывание.
HOLD – запрос на переход в режим прямого доступа к памяти.
HLDA – подтверждение захвата шины.
TEST – проверочный вход, используется в команде WAIT для организации холостых тактов: «1» - МП выполняет «0», с периодичностью 5 Т проверяет состояние этого сигнала.
MN/MX – минимальный / максимальный режимы, определяющие конфигурацию вычислительной системы. MN- ограничение объема памяти и т.д.

Архитектура МП.

МП содержит в своем составе 14 регистров общего назначения.
AX=AH+AL
BX=BH+BL
CX=CH+CL
DX=DH+DL

Все остальные регистры общего назначения являются неделимыми:
SP используются при обращениях к стеку для хранения
BP адресной информации
SI при обращении к памяти или внешнему устройству
DI

Сегментные регистры:
CS – определят начальный адрес сегмента кода в котором хранится программа;
SS – хранит начальный адрес сегмента стека;
DS – начальный адрес сегмента данных;
ES – начальный адрес дополнительного сегмента под данные;
IP – хранит смещение очередной команды переданной для выполнения.

DA=CS+IP
F- регистр флагов


19 0
|A |B|C|D |0|


+
19 0
|0|1|2|3|4|


|A |C|F|0|4|


При суммировании может возникать перенос из разряда A19 в A20. Этот перенос игнорируется. Аналогичную кольцевую организацию имеет каждый сегмент. При выборке команда: CS +IP = ФА команды. При обращении к стеку: SS +SP =ФА стека.

Обращение к данным может производиться из любого сегментного регистра: DS (SS,CS,ES) +EA = ФА данных. EA – эффективный адрес, константа, указанная в программе.

К данным можно обратиться через индексные регистры SI и DI; причем индексный регистр хранит смещение на адрес ячейки памяти, откуда данные можно извлечь. А DI хранит смещение на адрес ячейки памяти, куда данные можно направить: DS(SS,CS,ES) +SI=ФА данных; ES+DI =ФА данных. Обращение через регистр BX: ES(CS,SS,DS)+BX= ФА данных. Такая модульная организация памяти посегментно позволяет писать программы в виде отдельных модулей.

Структурная схема на основе К1810.

При организации вычислительной машины нужно решить следующие задачи:

1) разделить адресные сигналы и сигналы данных;

2) сформировать необходимые управляющие сигналы.

Первая задача решается с помощью буферных регистров К1810ИР82 и шинных формирователей К1810ВА86(87). Вторая задача несколько сложнее и зависит от сложности решаемых задач разрабатываемой микропроцессорной системы. Сложность задачи определяет нужные объемы памяти и количество устройств ввода / вывода. Поэтому МП К1810ВМ86 может работать в двух режимах: минимальный и максимальный. Минимальный позволяет организовывать вычислительные и управляющие системы, имеющие ограниченные объемы памяти и малое количество внешних устройств.

Структурная схема в минимальном режиме

Структурная схема в максимальном режиме.

Функциональные возможности комплекта К1810 позволяют организовать многопроцессорное вычисление системы. Задачу согласования многопроцессорной системы решает арбитр шин К1810ВБ89.

Микросхема К1810ГФ84.

X1,X2 – для подключения кварцевого резо- натора

F/C – вход выбора источника тактовой ча- стоты:

«1» - от собственного задающего генера- тора

«0» - от внешних сигналов синхронизации

PCLK – выход управления переферией.

OSC – выход внешнего задающего генератора
RES – вход сигнала сброса
CLK – выход ГТИ для управления памятью
READY – выход готовности генератора
RESET – сигнал системного сброса
AEN1,AEN2 – выходы разрешения адресации для сигналов готовности (RDY1,
RDY2)
Предназначен для управления ЦМП, памятью, внешними устройствами, контроллером системной шины и арбитром шин. Функционально состоит из генератора тактовой частоты, делителя частоты на 2 и 3 и схемы управления этими устройствами.

Контроллер системной шины

К1810ВГ88.

Контроллер предназначен для работы в составе микропроцессорной системы и обеспечивает подключение к ней памяти и внешних устройств,

Функциональные возможности МС: позволяет организовать конфигурацию вычислительной системы имеющей 2 магистрали: системная шина и резидентная шина. К системной шине подключается память, к резидентной – устройства в/в.

Входы S0-S2 – предназначены для подключения к центральному микропроцессору.
|S0 |S1 |S2 |Режим работы ВМ86 |Командные сигналы ВГ88 |
|0 |0 |0 |Подтверждение прерывания |INTA |
|1 |0 |0 |Ввод данных из устройства в/в |IORC |
|0 |1 |0 |Вывод данных в устройство в/в |IOWC,AIOWC |
|1 |1 |0 |Останов |------- |
|0 |0 |1 |Выборка команды |MRDC |
|1 |0 |1 |Чтение из памяти |MRDC |
|0 |1 |1 |Запись в память |MWTC |
|1 |1 |1 |Пассивное состояние (отключение от|MWTC,AMWC |
| | | |системной шины | |


Функционирование микросхемы осуществляется на основании следующего кода:


CLK –подключение системного генератора
AEN – строб управления выдачи командных сигналов контроллера (используется в случаях обращения к резидентной шине в/в.)
СEN – сигнал управления при каскадировании ВГ88
IOB - признак обращения к системной шине («0» -системная шина, «1» - резидентная шина)
MRDC – системный сигнал чтения из памяти
MWTC – системный сигнал записи в память
AMWC – опережающий строб при обращении к памяти
IORC – системный сигнал ввода
IOWC – системный сигнал вывода
AIOWC – опережающий строб
INTA – системный сигнал подтверждения прерывания
DEN - строб сопровождения данных для фиксации в регистры-защелки
ALE – строб сопровождения адреса в регистр-защелку
OT/R – сигнал определяющий направление передачи информации («0» -запись в память; «1»- считывание)
STB – сигнал стробирования адреса
PDEN – используется при каскадировании контроллеров системной шины в микропроцессорные вычислительные системы.

Функциональная схема включения.
Данная функциональная схема используется при работе микропрцессора в максимальном режиме при организациях многопроцессорных систем.

При обращенях к памяти и внешним устройствам очень сильно отличается по быстродействию. Поскольку многопроцессорные системы организовываются для решения сложных задач, требующих большого быстродействия, то нужно выполнять разделение обращения к внешним устройствам и памяти.

К1810ВБ89

S0-S2 – входы для подключения к МП ВМ86, состояние этих входов определяет режим работы арбитра шин. Зафиксировав эти сигналы арбитр шин начинает выполнение действий по захвату, освобождению или удержанию системной или резидентной шины.

CLK – вход для подключения системного генератора.

LOCK – вход запрета освобождения системной шины: «1» - арбитру запрещается освобождать системную шину, не зависимо от его приоритета.

CRQLCR - выход запрета освобождения системной шины если поступил запрос по входу

CBRQ.
ANYRQST – вход разрешения освобождения системной шины.
RESB – выбор режима работы системной либо резидентной шины («1» - системная шина; «0» - резидентная шина)
IOB – выбор режима работы при вводе / выводе информации через системную либо резидентную шину («1» - системная шина; «0» - резидентная шина)
AEN – сигнал разрешения доступа к системной шине.
BCLK – сигнал синхронизации системной шины.
BREQ – сигнал запроса системной шины.
BPRN – вход разрешения приоритетного доступа к системной шине
BPRQ – выход приоритетного доступа к системной шине.
BUSY – сигнал занятости шины.
CBRQ – вх/вых общего запроса шин.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.