Рефераты. Классификация и структура микроконтроллеров

§     Равное время выполнения всех машинных команд.

§     Практически все операции пересылки данных осуществляются по маршруту регистр – регистр.

Равное время выполнения всех машинных команд позволяют обрабатывать поток командных инструкций по конвейерному принципу, т.е. выполняется синхронизация аппаратных частей с учетом последовательной передачи управления от одного аппаратного блока к другому.

Аппаратные блоки в RISC-архитектуре:

Блок загрузки инструкций включает в себя следующие составные части: блок выборки инструкций из памяти инструкций, регистр инструкций, куда помещается инструкция после ее выборки и блок декодирования инструкций. Эта ступень называется ступенью выборки инструкций.

Регистры общего назначения совместно с блоками управления регистрами образуют вторую ступень конвейера, отвечающую за чтение операндов инструкций. Операнды могут храниться в самой инструкции или в одном из регистров общего назначения. Эта ступень называется ступенью выборки операндов.

Арифметико-логическое устройство и, если в данной архитектуре реализован, аккумулятор, вместе с логикой управления, которая, исходя из содержимого регистра инструкций, определяет тип выполняемой микрооперации. Источником данных помимо регистра инструкций может быть счетчик команд, при выполнении микроопераций условного или безусловного перехода. Данная ступень называется исполнительной ступенью конвейера.

Набор состоящий из регистров общего назначения, логики записи и иногда из RAM образуют ступень сохранения данных. На этой ступени результат выполнения инструкций записываются в регистры общего назначения или в основную память.

Однако к моменту разработки RISC-архитектуры, промышленным стандартом микропроцессоров де-факто стала архитектура Intel x86, выполненная по принципу CISC-архитектуры. Наличие большого числа программ, написанных под архитектуру Intel x86, сделала невозможным массовый переход ЭВМ на RISC-архитектуру. По этой причине основной сферой использования RISC-архитектуры явились микроконтроллеры, благодаря тому, что они не были привязаны к существующему программному обеспечению. Кроме того некоторые производители ЭВМ во главе с IBM так же начали выпускать ЭВМ, построенные по RISC-архитектуре, однако несовместимость программного обеспечения между Intel x86 и RISC-архитектурой в значительной степени ограничивала распространение последних.

Однако, преимущества RISC-архитектуры были столь существенны, что инженеры нашли способ перейти на вычислители, выполненные по RISC-архитектуре, при этом не отказываясь от существующего программного обеспечения. Ядра большинство современных микропроцессоров, поддерживающих архитектуру Intel x86, выполнены по RISC-архитектуре с поддержкой мультискалярной конвейерной обработки. Микропроцессор получает на вход инструкцию в формате Intel x86, заменяем ее несколькими (до 4-х) RISC-инструкциями.

Таким образом, ядра большинства современных микропроцессоров, начиная с Intel 486DX, выполнены по RISC-архитектуре с поддержкой внешнего Intel x86 интерфейса. Кроме того, подавляющее большинство микроконтроллеров, а так же некоторые микропроцессоры выпускаются по RISC-архитектуре.

В современном RISC-процессоре используется не менее 32 регистров, часто более 100, в то время, как в классических ЦВМ обычно 8-16 регистров общего назначения. В результате процессор на 20%-30% реже обращается к оперативной памяти, что также повысило скорость обработки данных. Кроме того, наличие большого количества регистров упрощает работу компилятора по распределению регистров под переменные. Упростилась топология процессора, выполняемого в виде одной интегральной схемы, сократились сроки ее разработки, она стала дешевле.

После появления RISC-процессоров традиционные процессоры получили обозначение CISC – то есть с полным набором команд (Complete Instruction Set Computer).

В настоящее время RISC-процессоры получили широкое распространение. Современные RISC-процессоры характеризуются следующим:

- упрощенным набором команд;

- используются команды фиксированной длины и фиксированного формата,

 простые способы адресации, что позволяет упростить логику декодирования команд;

- большинство команд выполняются за один цикл процессора;

- логика выполнения команд с целью повышения производительности ориентирована на аппаратную, а не на микропрограммную реализацию, отсутствуют макрокоманды, усложняющие структуру процессора и уменьшающие скорость его работы;

- взаимодействие с оперативной памятью ограничивается операциями

 пересылки данных;

- для обработки, как правило, используются трехадресные команды, что помимо упрощения дешифрации дает возможность сохранять большее число переменных в регистрах без их последующей перезагрузки;

- создан конвейер команд, позволяющий обрабатывать несколько из них одновременно;

- наличие большого количества регистров;

- используется высокоскоростная память.

В RISC-процессорах обработка машинной команды разделена на несколько ступеней, каждую ступень обслуживают отдельные аппаратные средства и организована передача данных от одной ступени к следующей.

Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько команд.

Выполнение типичной команды можно разделить на следующие этапы:

ü    выборка команды IF - по адресу, заданному счетчиком команд, из памяти извлекается команда;

ü    2) декодирование команды ID – выяснение ее смысла, выборка операндов из регистров;

ü    3) выполнение операции EX, при необходимости обращения к памяти - вычисление физического адреса;

ü    4) обращение к памяти ME;

ü    5)запоминание результата WB

В процессорах с RISC-архитектурой набор исполняемых команд сокращен до минимума. Для реализации более сложных операций приходится комбинировать команды. При этом все команды имеют формат фиксированной длины (например, 12, 14 или 16 бит), выборка команды из памяти и ее исполнение осуществляется за один цикл (такт) синхронизации. Система команд RISC-процессора предполагает возможность равноправного использования всех регистров процессора. Это обеспечивает дополнительную гибкость при выполнении ряда операций. К МК с RISC-процессором относятся МК AVR фирмы Atmel, МК PIC16 и PIC17 фирмы Microchip и другие.

На первый взгляд, МК с RISC-процессором должны иметь более высокую производительность по сравнению с CISC МК при одной и той же тактовой частоте внутренней магистрали. Однако на практике вопрос о производительности более сложен и неоднозначен.


Рис.2 Структура МК с RISC архитектурой


Гарвардская архитектура почти не использовалась до конца 70-х годов, пока производители МК не поняли, что она дает определенные преимущества разработчикам автономных систем управления.

Дело в том, что, судя по опыту использования МПС для управления различными объектами, для реализации большинства алгоритмов управления такие преимущества фон-неймановской архитектуры как гибкость и универсальность не имеют большого значения. Анализ реальных программ управления показал, что необходимый объем памяти данных МК, используемый для хранения промежуточных результатов, как правило, на порядок меньше требуемого объема памяти программ. В этих условиях использование единого адресного пространства приводило к увеличению формата команд за счет увеличения числа разрядов для адресации оперрандов. Применение отдельной небольшой по объему памяти данных способствовало сокращению длины команд и ускорению поиска информации в памяти данных.

Кроме того, гарвардская архитектура обеспечивает потенциально более высокую скорость выполнения программы по сравнению с фон-неймановской за счет возможности реализации параллельных операций. Выборка следующей команды может происходить одновременно с выполнением предыдущей, и нет необходимости останавливать процессор на время выборки команды. Этот метод реализации операций позволяет обеспечивать выполнение различных команд за одинаковое число тактов, что дает возможность более просто определить время выполнения циклов и критичных участков программы.

Большинство производителей современных 8-разрядных МК используют гарвардскую архитектуру. Однако гарвардская архитектура является недостаточно гибкой для реализации некоторых программных процедур. Поэтому сравнение МК, выполненных по разным архитектурам, следует проводить применительно к конкретному приложению.


2.3 Микроконтроллер с RISC архитектурой


PIC16C71 относится к семейству КМОП микроконтроллеров. Отличается тем, что имеет внутреннее 1K x 14 бит EPROM для программ, 8-битовые данные и 64- байтовый встроенный аналого-цифровой преобразователь. Отличаются низкой стоимостью и высокой производительностью.

Пользователи, которые знакомы с семейством PIC16C5X могут посмотреть подробный список отличий нового от производимых ранее контроллеров.

Все команды состоят из одного слова (14 бит шириной) и исполняются за один цикл (200 нс при 20 МГц), кроме команд перехода, которые выполняются за два цикла (400 нс).

PIC16C71 имеет прерывание, срабатывающее от четырех источников, и восьмиуровневый аппаратный стек.

Периферия включает в себя 8-битный таймер/счетчик с 8-битным программируемым предварительным делителем (фактически 16 - битный таймер), 13 линий двунаправленного ввода/вывода и восьми битный АЦП. Высокая нагрузочная способность (25 мА макс. втекающий ток, 20 мА макс. Вытекающий ток) линий ввода/вывода упрощают внешние драйверы и, тем самым, уменьшается общая стоимость системы.

АЦП имеет четыре канала, схему выборки и хранения, разрешающую способность 8 бит с погрешностью не более одного младшего разряда. Среднее время преобразования 30 мкс, включая время выборки.

Серия PIC16C71 подходит для широкого спектра приложений от схем высокоскоростного управления автомобильными и электрическими двигателями до экономичных удаленных приемопередатчиков, показывающих приборов и связных процессоров. Наличие ПЗУ позволяет подстраивать параметры в прикладных программах (коды передатчика, скорости двигателя, частоты приемника и т.д.).

Малые размеры корпусов, как для обычного, так и для поверхностного монтажа, делает эту серию микроконтроллеров пригодной для портативных приложений.

Низкая цена, экономичность, быстродействие, простота использования гибкость ввода/вывода делает PIC16C71 привлекательным даже в тех областях, где ранее не применялись микроконтроллеры. Например, таймеры, замена жесткой логики в больших системах, сопроцессоры.

Микроконтроллер имеет:

- только 35 простых команд;

- все команды выполняются за один цикл(200ns), кроме команд перехода- 2 цикла;

- рабочая частота 0 Гц ... 20 МГц (min 200 нс цикл команды)

- 14- битовые команды;

- 8- битовые данные;

- 36 х 8 регистров общего использования;

- 15 специальных аппаратных регистров SFR;

- восьмиуровневый аппаратный стек;

- прямая, косвенная и относительная адресация данных и команд;

- четыре источника прерывания:

внешний вход INT

- переполнение таймера RTCC

- прерывание при завершении аналого-цифрового преобразования

- прерывание при изменении сигналов на линиях порта B.

Периферия, ввод и вывод микроконтроллера имеет:

- 13 линий ввода-вывода с индивидуальной настройкой;

- втекающий/вытекающий ток для управления светодиодами

- макс втекающий ток - 25 мА

- макс вытекающий ток - 20 мА

- 8 - битный таймер/счетчик RTCC с 8-битным программируемым предварительным делителем;

- модуль АЦП:

- 4 мультиплексируемых аналоговых входа, подсоединенных к одному аналога цифровому преобразователю

- схема выборки\хранения

- время преобразования - 20 мкс на канал

- преобразователь - 8 бит, с погрешностью +-1 LSB

- вход для внешнего опорного напряжения Vref (Vref <= Vdd)

- диапазон входных аналоговых сигналов от Vss до Vref

- автоматический сброс при включении;

- таймер включения при сбросе;

- таймер запуска генератора;

- Watchdog таймер WDT с собственным встроенным генератором, обеспечивающим повышенную надежность;

- EPROM бит секретности для защиты кода;

- экономичный режим SLEEP;

- выбираемые пользователем биты для установки режима возбуждения встроенного генератора:

 - RC генератор RC

 - обычный кварцевый резонатор XT

 - высокочастотный кварцевый резонатор HS

 - экономичный низкочастотный кристалл LP

- встроенное устройство самопрограммирования EPROM памяти программ,

используются только две ножки.

Обозначения ножек и их функциональное назначение:

RA4/RTCC -Вход через триггер Шмидта. Ножка порта ввода/вывода с открытым стоком или вход частоты для таймера/счетчика RTCC.

RA0/AIN0 - Двунаправленная линия ввода/вывода.

Аналоговый вход канала 0.

Как цифровой вход имеет уровни ТТЛ.

RA1/AIN1 -Двунаправленная линия ввода/вывода.

Аналоговый вход канала 1.

Как цифровой вход имеет уровни ТТЛ.

RA2/AIN2 -Двунаправленная линия ввода/вывода.

Аналоговый вход канала 2.

Как цифровой вход имеет уровни ТТЛ.

RA3/AIN3/Vref -Двунаправленная линия ввода/вывода.

RB0/INT -Двунаправленная линия порта вывода или внешний вход прерывания.

RB1 - RB5 -Двунаправленные линии ввода/вывода.

RB6 - Двунаправленные линии ввода/вывода.

RB7 -Двунаправленные линии ввода/вывода.

/MCLR/Vpp -Низкий уровень на этом входе генерирует сигнал сброса для контроллера. Активный низкий.

Вход через триггер Шмидта.

OSC1 -Для подключения кварца, RC или вход внешней тактовой частоты.

OSC2 -Генератор, выход тактовой

CLKOUT -частоты в режиме RC генератора, в остальных случаях - для подкл. кварца

Vdd –Напряжение питания.

Vss –Общий (земля).



Заключение


В данной курсовой работе рассмотрены микроконтроллеры с RISC и CISC архитектурой. RISC архитектура была рассмотрена более углубленно и точнее. Отмечена классификация, структура микроконтроллера, структура процессорного ядра микроконтроллера, основные особенности RISC архитектуры.

На сегодняшний день существует более 200 модификаций микроконтроллеров, совместимых с i8051, выпускаемых двумя десятками компаний, и большое количество микроконтроллеров других типов. Популярностью у разработчиков пользуются 8-битные микроконтроллеры PIC фирмы Microchip Technology и AVR фирмы Atmel, шестнадцатибитные MSP430 фирмы TI, а также ARM, архитектуру которых разрабатывает фирма ARM и продаёт лицензии другим фирмам для их производства, процессоров — микроконтроллеры.

При проектировании микроконтроллеров приходится соблюдать баланс между размерами и стоимостью с одной стороны и гибкостью и производительностью с другой. Для разных приложений оптимальное соотношение этих и других параметров может различаться очень сильно. Поэтому существует огромное количество типов микроконтроллеров, отличающихся архитектурой процессорного модуля, размером и типом встроенной памяти, набором периферийных устройств, типом корпуса и т. д.


Список использованной литературы:


1. «Основы микропроцессорной техники». Авторы Ю.В. Новиков и П.К Скоробогатов.

2. «Архитектура вычислительных систем» Москва «Радио и связь» 1990 г.

Автор А.Д. Смирнов.

3. «Электронно-вычислительные машины и системы» Москва «Радио и связь»1991г. авторы Б.М.Каган.


Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.