Рефераты. Измерение частоты и интервалов времени

Измерение частоты и интервалов времени

Федеральное агентство по образованию

Волгоградский государственный технический университет

Контрольная работа

по предмету: Метрология

на тему: Измерение частоты и интервалов времени

Выполнила тудентка

Группы ВЗК – 282 с

Луценко Г.В.

Проверил преподаватель

Исаев А.В.

План

1.   Цифровые частотомеры

2.   Измерение частоты

3.   Измерение периода

4.   Погрешности измерения частоты

5.   Погрешности измерения периода

6.   Повышение эффективности обработки сигналов при оценке частотно-временных параметров

Цифровые частотомеры


Среди цифровых приборов частотно-временной группы электронно-счетные частотомеры (в дальнейшем цифровые частотомеры - ЦЧ) являются наиболее распространенными, что объясняется, их универсальностью, высокими метрологическими и эксплуатационными характеристиками.

В основу построения ЦЧ положены общие принципы, позволяющие реализовать ряд режимов работы прибора для измерения нескольких величин. Функционально полные ЦЧ позволяют измерять следующие величины: частоту, период, отношение двух частот (иногда выраженное в процентах), длительность импульса или интервала времени, задаваемого пользователем; предусматриваются также режим счета событий (импульсов) и использование ЦЧ как источника сигналов с известными (калиброванными) частотами. Режимы работы задаются и выбираются положением ряда переключателей (механических или электронных) и других органов управления. В более простых вариантах исполнения ЦЧ используются для измерения меньшего числа величин (например, одной или двух).

В любом режиме часть структуры ЦЧ остается неизменной и в ней происходит счет числа импульсов , пропорционального измеряемой величине. Эти импульсы проходят через электронный ключ ЭК, находящийся в замкнутом состоянии, на счетчик импульсов СИ. Код числа, образующийся в СИ, поступает на цифровое отсчетное устройство ЦОУ. В состав ЦОУ входит многодекадный цифровой индикатор с перемещающейся, запятой и, как правило, индикатор с обозначением единиц измерения.

Время замкнутого состояния ЭК, называемое временем счета СЧ, определяется родом измеряемой величины, а его конкретное значение рядом соображений, о которых будет сказано ниже.


Измерение частоты


Структурная схема ЦЧ в этом режиме работы приведена на рис.1 а. Напряжение измеряемой частоты fx (рис.1б) подается на вход формирующего устройства (ФУ), назначение которого - формирование сигнала стандартной формы при достаточно произвольной форме входного сигнала. Обычно в состав ФУ входят усилитель-ограничитель, обеспечивающий заданную амплитуду своего выходного сигнала, и формирователь для обеспечения малой длительности фронта и среза импульсов на выходе ФУ. Частота этих импульсов равна частоте входного сигнала (рис. 1в). Эти импульсы проходят через ЭК на СИ в течение времени счета Тс , которое задается генератором опорной частоты ГОЧ и делителем частоты ДЧ. Частота ГОЧ стабилизирована кварцевым резонатором. Необходимое Тс выбирается переключателем ВРЕМЯ СЧЕТА. При каждом запуске прибора на выходе ДЧ появляется один импульс (рис. 1в), под действием которого замыкается ЭК.

Число импульсов Nx, прошедшее на СИ, определяется приближенной формулой


(1)

 


а значение измеряемой частоты


(2)

 

Измерение периода

Структура ЦЧ в этом режиме приведена на рис. 2а. В этом режиме время замкнутого состояния ЭК задается периодом (или n периодами). Входной сигнал, период которого Tx измеряется (рис. 2б) так же, как и при измерении частоты, подается на вход ФУ. Выходной сигнал ФУ (рис. 2в) поступает на делитель частоты ДЧ (множитель периодов Tx). Число n (обычно n - это 1, 10, 102, 103 или 104) выбирается переключателем ВРЕМЯ СЧЕТА, т.е., пТx. При запуске на выходе ДЧ появляется импульс по длительности равный пТx (рис. 2г), в течение которого СИ подсчитывает прошедшие за это время импульсы с известным периодом следования Tтакт (рис. 2д), называемые часто «метками времени».

Число импульсов Nx и период Tx, приближенно определяются формулами (3) и (4):


Nx=nTx/Tтакт

Tx=NxTтакт/n


Известно, что частота f и период T связаны формулой l=f T. Поэтому через прямое измерение одной из этих величин можно найти результат косвенного измерения другой.


Погрешности измерения частоты

В режиме измерения частоты в течение Tc подсчитываются импульсы, следующие с измеряемой частотой fx (рис. 3а). Для этого случая имеем:


 (5)


Если не принимать специальных мер по синхронизации импульса Tc и импульсов измеряемой частоты (т. е., если не задается принудительно определенное положение этих импульсов по отношению друг к другу), то интервалы t1 и t2 являются независимыми величинами, значения каждой из которых лежит в интервале 0 – Tx и поэтому


Поделив обе части уравнения (5) на произведение TcTx, получаем


  (6)

с учетом, что

 и , .


В режиме измерения частоты величина 1/Tc является ценой единицы младшего разряда счетчика (Cf=1/Tc), имеющая размерность Герц (с-1). В зависимости от выбранного значения Tc будем иметь Сf=1 Гц (Tc=1c), Сf=10 Гц (Tc=0,1c), Сf=0,1 Гц (Tc=10c) и т. д. Поэтому формулу (6) можно представить в виде



Случайную составляющую погрешности  называют погрешностью счета (при более строгом подходе в этой погрешности выделяют две составляющие: погрешность дискретности и погрешность несинхронизации).

Относительное значение этой погрешности равно


, причем .

Другим источником погрешностей ЦЧ является отклонение Tc от номинального значения и его нестабильность. В ЦЧ Tc формируется из целого числа периодов колебаний кварцевого генератора, для которого характерна чрезвычайно высокая стабильность частоты генерируемых им колебаний. Для уменьшения влияния температуры среды в ЦЧ применяется термостатирование генератора.

Таким образом, вторая составляющая погрешности измерения частоты определяется нестабильностью частоты кварцевого генератора


 [%] и поэтому .


Следовательно,  и .

Суммарные погрешности измерения частоты равны


, [Гц]

, [%]

Погрешности измерения периода. При измерении периода (рис. 3б) в течение Tx (или nTx) на СИ проходят импульсы с известным периодом следования Ттакт и поэтому (см. рис. 4б)


.


Так же, как и в предыдущем случае, -t1+t2 является случайной величиной, причем,


, т. е.

.


При измерении n периодов имеем


 или

,


что эквивалентно уменьшению цены единицы младшего разряда в n раз.

Период следования импульсов Ттакт задается тем же кварцевым генератором, и все предыдущие замечания в отношении нестабильности Тс полностью справедливы и для этого режима работы. Поэтому


и

Суммарные погрешности (абсолютная и относительная) измерения периода определяются выражениями:


, [c]

, [%]

Повышение эффективности обработки сигналов при оценке частотно-временных параметров

Выбор и оптимизацию алгоритмов обработки данных при оценке частотно-временных параметров исследуемых сигналов выполняют при разработке и построении самых различных радиотехнических систем и приборов, работающих на этих принципах. Наиболее распространенным методом построения аппаратуры и выводы о предельных значениях статистических оценок среднего значения частотно-временных параметров в случае отсутствия априорных данных об исследуемом сигнале, является метод обнаружения и оценки значений неизвестных параметров по максимуму функции правдоподобия, который реализуется в корреляционных и многоканальных устройствах. Трудности, связанные с реализацией таких устройств обеспечивающих потенциальные точностные характеристики, привели к тому, что на практике нашли широкое распространение классические одноканальные цифровые устройства обработки сигналов (цифровые измерители среднего значения мгновенной частоты частотомеры), для которых исследование механизма возникновения и снижения погрешностей при оценке частотно-временных параметров является актуальной задачей исследования. Возможности повышения эффективности обработки сигналов при оценке частотно-временных параметров можно получить, исследуя распространенную модель аддитивной смеси гармонического сигнала и узкополосного детерминированного или случайного процесса:


,


где Um, 0 и 0 - амплитуда, угловая частота и начальная фаза сигнала, а A(t) и θ(t) - огибающая и фаза случайного процесса ξ(t); U(t), (t) и Φ(t) - огибающая, случайная фаза и полная фаза аддитивной смеси, представляющая собой случайный нестационарный процесс.

Одной из исследуемых функцией, представляющей практический интерес, является мгновенная частота, связанная с полной фазой известным соотношением:

ω(t)=dΦ(t)/dt=ω0+(t),


где (t)=(t) - случайная частота, определяемая через производную случайной фазы аддитивной смеси и характеризующая скорость ее изменения.

Оценка математического ожидания случайного процесса (t) на интервале времени усреднения Т в общем виде может быть выполнена по формуле [2]:


(1)

 
,


где g(t) – весовая функция оператора сглаживания, удовлетворяющая условию несмещенности оценки:

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.