Рефераты. Фотоприемники на основе твердого раствора кадмий-ртуть-телур (КРТ)

Длительное время эта проблема сдерживала развитие фотоприёмников из ОМ КРТ. Ситуация изменилась после того, как были разработаны технологии легирования ОМ КРТ индием, пассивации поверхности образцов КРТ и нанесение защитных, в том числе просветляющих, покрытий.

Особое место занимает введение в монокристалл незначительного количества индия (N ~ 1015) в процессе выращивания монокристалла КРТ. Индий – амфотерная примесь в КРТ и является преимущественно донором. Монокристаллы, легированные индием, обладают не только большей стабильностью свойств при длительном хранении, но также большей однородностью по электрофизическим характеристикам и большими значениями времени жизни неравновесных носителей заряда в образцах «n» – типа.

Использование собственного анодного окисла позволило стабилизировать поверхность фоторезистора, но при этом увеличилась проводимость образца за счёт приповерхностного фиксированного заряда, создаваемого анодным окислом в КРТ.

Особенностью материала КРТ является его высокая чувствительность к обработке (шлифованию, полированию, травлению). Исходный, незащищённый образец ОМ КРТ в поверхностном слое ухудшает свои свойства при длительном воздействии повышенных температур (60 – 700С). При изготовлении фоторезистора этот слой нуждается в удалении. Неизбежное утоньшение толстой пластины (1 мм) до толщины рабочего слоя порядка 15 – 17 мкм связано с химико-механической обработкой, которая также даёт нарушенный слой, который необходимо удалять финишным травлением. Это травление приводит к завалам краёв образца, ухудшению плоскости и снижению коэффициента использования ОМ КРТ.

Виды фоточувствительных элементов на основе ОМ КРТ.

Фоточувствительный элемент с запирающими контактами.

Первым способом, использованном на практике, для увеличения вольтовой чувствительности фоторезисторов на КРТ диапазона 8 – 14 мкм был способ получения запирающих контактов. Запирающие контакты получались путём обработки подконтактных областей ионами аргона, под действием которых в подконтактной области возникали отрицательно заряженные дефекты. Электрическое поле подконтактной области уменьшало скорость дрейфа неравновесных носителей, продлевая тем самым, время жизни носителей, что приводило к увеличению вольтовой чувствительности при увеличении напряжения смещения в образцах (ФЧП размерами 50х50 мкм), в которых временем жизни носителей в КРТ в объёме было не менее 1 – 2 мкс. Обработка подконтактных областей ионами аргона сопровождалось травлением поверхности и её очищением, что также улучшало качество контактов. Конструкция фоточувствительного элемента с запирающими контактами схематически изображена на рисунке 12.


Рис. 12 Конструкция ФЧЭ с запирающими контактами.

1 – подложка контактного растра, 2 – контактная дорожка растра, 3 – клей, 4 – подложка ФЧЭ, 5 – клей, 6 – фоточувствительный слой КРТ, 7 – припой, 8 – контакт ФЧЭ, 9 – проводник Au, 10 – защитное просветляющее покрытие, 11 – подконтактный слой n+.

Фоточувствительный элемент с частично затенённой площадкой.

Для увеличения вольтовой чувствительности путём снижения влияния «пролёта» носителей в ряде случаев используются более сложная конструкция и технология изготовления ФЧЭ.


Рис. 13 Конструкция ФЧЭ с частично затемнённой площадкой.

1 – подложка контактного растра, 2 – клей, 3 – подложка слоя КРТ, 4 – клей, 5 – фоточувствительный слой КРТ, 6 – припой, 7 – проводник Au, 8 – контакт ФЧЭ, 9 – защитное покрытие, 10 – затеняющая металлическая шторка (In).


В конструкции (рис. 13) «электрический» размер ФЧП (расстояние между контактами) существенно больше, чем световой. Это достигается путём нанесения непрозрачной металлической шторки поверх защитного диэлектрического просветляющего покрытия удлинённой площадки. Таким образом, удлинённая и частично затенённая площадка превращается в квадратную. Время «пролёта» носителей в этом случае увеличивается с удлинением площадки, соответственно возрастает вольтовая чувствительность.

В конструкции фоточувствительного элемента величина «b» характеризует световой размер ФЧП, а величина «L» – электрический (расстояние между контактами, определяющее время «пролёта» носителей). Затеняющая металлическая шторка (10) получена напылением индия через маску.

Гетероэпитаксиальные структуры КРТ.

Строение ГЭС КРТ.


Рис. 14 Строение ГЭС КРТ.

1-Подложка из монокристаллического арсенида галлия;

2-Буферный слой Cd Zn Te;

3-Варизонный слой CdxHg1-xTe x=1->0,215;

4-Рабочий слой CdxHg1-xTe x=0,215±0,005;

5-Варизонный слой CdxHg1-xTe x=0,215->0,3–0,35.


Толщины слоёв должны находится в пределах:

Буферный слой CdZnTe                  2 – 8 мкм,

Нижний варизонный слой              0,5 – 1,5 мкм,

Рабочий слой                                  5 – 7 мкм,

Верхний варизонный слой             0,1 – 0,5 мкм.

Отклонение толщины слоёв по образцу не более 10% от среднего значения. Суммарная толщина ГЭС при диаметре 51 мм – 0,4 мм ± 10%, при диаметре 76 мм – 0,5 мм ± 10%.

Важнейший параметр, характеризующий совершенство слоёв и их пригодность к разработке и выпуску фоторезисторов – время жизни неравновесных носителей заряда достигло (2 – 2,5)*10-6 с. Такие значения времени жизни наблюдаются в высококачественных ОМ КРТ.

Фоточувствительный элемент на основе гетероэпитаксиальной структуры КРТ.

Появление новых эпитаксиальных методов получения тонких слоёв КРТ позволило изменить конструкцию фоточувствительного элемента, упростить технологию изготовления фоторезисторов из эпитаксиальных структур и существенно улучшить характеристики, в том числе вольтовую чувствительность. Жидкофазная эпитаксия, при которой в процессе выращивания слоя КРТ заданного состава происходит неоднородный подтрав подложки, а на поверхности эпитаксиального слоя КРТ образуется рельеф, также пригодна для изготовления фоторезисторов радикальном изменении технологии. Подтрав приводит к разнотолщинности слоя КРТ и разбросу сопротивления фоточувствительных площадок, что ухудшает однородность фотоэлектрических характеристик и качества фотоприёмника. Рельеф поверхности при ЖФЭ вынуждает вводить дополнительную химико-механическую обработку поверхности, приводящую к ухудшению плоскости слоя КРТ и снижению выхода годных.

Развитие молекулярно-лучевой эпитаксии позволило получить слои КРТ с зеркальной поверхностью оптимальной толщины. Сложные гетероэпитаксиальные структуры (ГЭС) материала КРТ, полученные методом молекулярно лучевой эпитаксии позволили создать новую конструкцию фоточувствительного элемента фоторезистора.


Рис. 15 ФЧЭ на основе ГЭС КРТ.

1 – подложка контактного растра, 2 – подслой хрома, 3 – контактная дорожка Au, 4 – клей, 5 – подложка GaAs, 6 – буферный слой CgZnTe, 7 – варизонный слой CdxHg1-xTe, 8 – токоподвод Au, 9 – рабочий слой Cg0,2Hg0,8Te, 10 – припой InAu, 11 – варизонный слой CdxHg1-xTe, 12 – слой CdTe, 13 – слой ZnSe, 14 – слой YtSc, 15 – слой n+.


Особенности фоторезистора на основе ГЭС КРТ с варизонными слоями, полученными методом молекулярно-лучевой эпитаксии.

Преимущества данной конструкции ФЧЭ состоят:

– в возможности увеличения вольтовой чувствительности в 3 – 4 раза за счёт уменьшения толщины рабочего слоя до ≈ 5 мкм вместо 15 – 20 мкм в конструкции ФЧЭ с запирающими контактами и соответствующего увеличения темнового сопротивления;

– в практически полном подавлении поверхностной рекомбинации за счёт встроенного электрического поля варизонной структуры:

E = (1/e)*(dEν/dx),

препятствующего диффузии неравновесных носителей к поверхности ФЧЭ.

Значение градиента состава варизонных слоёв определяются из соотношения скорости диффузии носителей заряда к поверхности и скорости дрейфа носителей в электрическом поле смещения, Vдиф.<< Vдр., где Vдиф. i = Dp/bi (Dp – коэффициент диффузии дырок в варизонных нижнем и верхнем слое, а bi – толщина i-го варизонного слоя), Vдр. = μp(1/e)*(dEν/dx).

Следовательно:

Dp/bi << μp(1/e)*(dEν/dx),

dEν/dx >> eDp/bi μp.


Dp ≈ 2 см2/с; B = 2*10-4 см; μp ≈ 400 см2/В*с и eD = μpkT ≈ 32,5 эВ/см. Таким образом E >> 35 В/см, что легко достижимо в варизонных слоях. Следствием этого является практически полная реализация времени жизни неравновесных носителей в объёме полупроводников:

– наличие варизонного слоя соответствующего градиента состава в фоторезисторе исключает шунтирование рабочей области поверхностными слоями и устраняет вклад поверхностной рекомбинации в шумы вида 1/f;

– варизонные слои фоторезистора приводят к расширению спектральной области фотоответа и увеличению интегральной чувствительности фоторезистора.

 

 


Выводы


Итак, в ходе выполнения курсовой работы я пришел к выводу, что КРТ – не только настоящее, но и будущее полупроводниковой технологии. В связи с его преимуществами без КРТ невозможно представить фотоприемную промышленность во всем мире. Считаю, что крайне важно дальнейшее развитие технологии и расширение возможностей по внедрению и применению КРТ как материала для фотодетекторов в нашей стране.

1.                 В работе я ознакомился с теорией проводимости полупроводников

2.                 Рассмотрел теоретические основы взаимодействия вещества со светом (фотопроводимости).

3.                 Проанализировал основные важные для применения свойства КРТ (физико-химические, оптические, электрические)

4.                 Выделил главные преимущества этого материала по сравнению с другими полупроводниками, конкурирующими с КРТ в производстве приборов (фотодетекторов),

5.                 Рассмотрел приборы на основе КРТ: их принцип действия и устройство.

6.                 Ознакомился с особенностями некоторых методов получения КРТ (объемных кристаллов и тонких пленок).


Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.