Рефераты. Електротехніка і спецтехнологія електромонтерів

Збільшити напругу в 10 раз ,ми зменшимо некорисні втрати в 100 раз. У сьому полягає причина того , що в сучасній електротехніці енергію , яка добувається на електростанціях , намагаються передавати у віддалені місця під якнайвищою напругою .

Звичайно , знизити некорисні втрати можна було б , зменшивши R , тобто опір проводів . Але для цього довелося б їх робити дуже товстими , бо довжина проводів задається відстанню до місця споживання . Зрозуміло , що значне збільшення перерізу проводів пов’язане з їх подорожчанням і , отже, воно нераціональне . Навпаки , застосування високих напруг дає змогу користуватися тонкими проводами , тобто проводами з великим опором , але зате набагато дешевшими .

Проте будувати генератори напругою в сотні тисяч вольт дуже важко хоча б тому , що ізоляція машин не витримує таких напруг . Крім того , не можна такі високі напруги подавати безпосередньо споживачеві .

Єдиний можливий вихід полягає в тому , щоб на електричній станції підвищувати напругу , яку дає генератор , передавати енергію під цією високою напругою в місце споживання і тут знову знижувати напругу до потрібних меж . Здійснити таке перетворення напруг для постійного струму надзвичайно важко . Навпаки , для змінного струму таке перетворення можна провести з допомогою трансформатора легко і з дуже малими втратами енергії.

Потужні електричні станції виробляють величезні кількості електричної енергії при змінній напрузі в 6 - 20 тисяч вольт і частоті 50Гц. Ця енергія подається в підвищувальні трансформатори і потрапляє в лінії передачі під напругою в 110 - 220 тисяч вольт . По лініях передачі енергії подається до місця споживання .Тут струм приймається насамперед на головну знижувальну підстанцію , де з допомогою трансформатора напруга його підвищується звичайно до 35 тисяч вольт .Під цією напругою струм потрапляє в проводи районної розподільної мережі , яка сполучає головну знижувальну підстанцію з порівняно близькими місцями споживання . У кожному такому місці встановлюють вторинні знижувальні підстанції, тобто трансформатори , які знижують напругу до 3 , 6 або до 10 тисячі вольт .Звідси по проводах місцевої розподільної мережі струм потрапляє в численні трансформаторні пункти , які є на окремих заводах або обслуговують невелику групу будинків , а іноді й один великий будинок . Тут напруга знижується до 127 , 220 або 380В і під цією низькою напругою енергія подається в окремі квартири , до верстатів тощо , по так званій внутрішній мережі .

Звичайно електрична енергія передається майже виключно у вигляді змінного струму високої напруги . Але розрахунок показує , що передавати її у вигляді постійного струму високої напруги набагато вигідніше , бо це потребувало б проводів з перерізом , а отже , й вагою в 1,5 рази меншими , а при далеких відстанях передачі (на тисячі кілометрів) це дуже істотний момент . Використання постійного струму замість змінного гальмується тим , що досі не знайдено способу добування потужних постійних струмів високої. напруги і не існує способів трансформації напруги постійного струму Це одне з дуже важливих завдань , які стоять перед електротехнікою.

У наш час електричні вимірювання й електричні прилади посідають одне з чільних місць у житті цивілізованого людства . За частотою застосувань електричні вимірювання поступаються хіба що лише вимірюванням довжини , маси та температури . Електричні вимірювання застосовуються не лише для вимірювань власне електричних величин (напруги, струму, потужності, енергії, опору, частоти, зсуву фаз, ємності та ряду магнітних величин), а й при використанні перетворювачів для вимірювання багатьох неелектричних величин (тиску, температури, швидкості, параметрів вібрації, рівня рідин та сипучих матеріалів, витрати рідин та газоподібних речовин, величин потужних деформацій , відстаней тощо).

Найбільшого розмаїття електровимірювальних приладів досягнуло в енергетиці . Без застосування електровимірювальних приладів була б неможливою робота сучасних електричних станцій , де нормальна дія кожного енергоблоку може підтримуватись персоналом лише на основі аналізу інформації , що находять від багатьох десятків (а іноді й сотень)приладів , які контролюють безліч параметрів енергоблоку. При цьому чи не найбільша частина цих електричних приладів контролює неелектричні величини .

В енергетиці електровимірювальні прилади використовують не тільки для поточного контролю роботи енергообладнання, а й для пошуку його пошкоджень. Причому саме за допомогою електричних вимірювань візуально недосяжні пошкодження обладнання знаходять найвище й найточніше. Потенціальні можливості промисловості , що виробляє електровимірювальні прилади , в Україні надзвичайно великі й значною мірою перевищують потреби країни у цих приладах .

Важко уявити нашу працю і побут без електрики . Її широко використовують у промисловості , на транспорті , у зв’язку , в медицині й мистецтві . Електрика дозволила створити нові технології виробництва і матеріали , яких немає в природі.


ІІ. Трифазні трансформатори


1) Трифазні електродвигуни


Основним недоліком двигунів з короткозамкненим ротором є трудність регулювання частоти обертання ротора , а значить і пуску навантаженого електродвигуна .

Змінити частоту обертання можна зміною кількості пар полюсів або частоти . Перший спосіб застосовують для зменшення частоти обертання , а другий - для збільшення .

У деяких двигунах кількість обмоток (а отже ,й частота обертання) зміна , але плавно не регулюється . Двигуни мають не великий пусковий момент і значну кратність пускової сили струму .

Однією із найважливіших характеристик двигуна є ККД . Він обернено пропорціонально залежить від зазору між магніто проводами статора й ротора .

Електродвигун вибирають за потужністю , частотою обертання , режимом роботи та конструктивним виконанням .

Режим роботи - тривалий , короткочасний та повторно - короткочасний , позначають відповідно S1 , S2 , S3 .

У тривалому режимі працюють двигуни вентиляторов, водяних насосів тощо.

На паспорті двигуна короткочасного режиму надпису S2 немає , а вказана тривалість періоду навантаження : 10 , 30 , 60 або 90 хв.

У двигунів повторно - короткочасного режиму вказують тривалість вмиканнях в процентах : ПВ 15, 25 , 40 чи 60 %

Для всіх режимів недопустиме перевантаження двигуна , тому що при перегріванні він виходить із ладу .

Кожний клас нагрівостійкості ізоляції має допустиму температуру нагрівання : А - 105 °С (волокнисті матеріали , папір , емаль , лаки , деякі полімери) ; Е - 120 °С (деякі синтетичні матеріали) ; В - 130 - (на основі слюди , азбесту чи скловолокна з органічними просочувальними сумішами ); С - понад 180 °С (слюда, кварц , скло , фарфор ) .

Під впливом теплоти , вібрації та інших факторів ізоляція старіє , тобто втрачає електроізоляцію та механічні властивості , а надмірна напруга її прибиває .

Температуру нагрівання електродвигуна визначають рукою . Якщо її можна втримати , то перегрівання не має .

Якщо двигун при тривалій роботі залишається холодним або трохи теплим , то це певна ознака недовантаження . Його слід повністю завантажити або замінити двигуном меншої потужності .

При виборі двигуна звертають увагу на виконання за ступенем захисту . У захищених двигунах обмотка закрита лише від дощу , а сторонні предмети різної величини можуть потрапити всередину. Це двигуни серії 4А з ступенем захисту ІР23 . Закриті обдувні двигуни захищені від потраплянням предметів , розміри яких більші 1 мм. Їх ступінь захисту ІР44 .

Іноді має значення з якого матеріалу виготовлений корпус та інші деталі двигуна . Літерою Х позначають алюмінієвою станину і чавунні щити .

Перед пробним пуском двигуна перевіряють правильність підключення (згідно схеми) двигуна , приладів, апаратів . Мегомметром вимірюють опір ізоляції між проводами та кожним проводом і землею при відключеному приймачі і апаратах . Він неповинний бути меншим 0,5 МОм . Ротор прокручують рукою . Перевіряють справність робочої машини , прокручують рукою всі її частини .

Перед пуску двигуна слід відійти від нього , щоб не бути травмованим у випадки несправності .

Перший раз вимикають двигун на одну мить . Зразу ж після натискання кнопки "Пуск" натискають на кнопку "Стоп". При справності двигуна , апаратури і електричного кола та при наявності струму він встигне зробити кілька оборотів . Це буде доказом справності електроустановки і покаже напрямок обертання ротора .

Якщо ротор обертається в інший бік і не реверсується , міняють місцями будь - які два проводи на клемах двигуна або пусковому обладнанні .

У випадку ,якщо напрямок обертання двигуна візуально визначити не можна ,стежать за показами приладів . Наприклад , заглибний двигун знаходиться на глибині 20 м. На його роботу і напрямок обертання вкаже амперметр .


2) Несправності електродвигунів


Якщо двигун не працює , індикатором перевіряють наявність напруги на запобіжниках , пусковій апаратурі , а потім на затискачах двигуна . Операції можна виконувати і в зворотній послідовності . Відсутність напруги на всіх трьох фазах може бути у випадках : якщо струм не надходить від джерела або не проходить через пускові апарати .

Відсутність напруги на двох або на одній фазах може виникнути внаслідок перегоряння запобіжника , поганого контакту , обриву проводу . Поганий контакт визначають вольтметром , заміривши напругу на ньому при працюючому двигуні . За показами амперметра і вольтметра обчислюють опір у контакті і усувають чи зменшують його зачищенням і затягуванням .


3) "Перекинута" фаза


Початки виводів трифазних двигунів позначають С1, С2 і С3 , а кінці -С4, С5 і С6 . При розбиранні та складанні двигунів бирки іноді гублять , а кінці плутають з початками .



Оскільки фаза "перекинута" (обмотка залишилась на місці) , то струм іде у зворотному напрямку . Отже , ця обмотка не тільки не допомагає двом іншим , а й гальмує їх роботу (двигун не розвиває оберти , втрачає потужність). Виникає потреба перевірити чи правильно взято кінці і початки фаз . Найзручніше це зробити так . Провонюють всі обмотки , щоб з’ясувати , який кінець якій обмотці належить . На обидва кінці однієї обмотки надівають шматочки ізоляційної трубки з надписами А1 та А2 , другої - В1 та В2 , третьої - С1 та С2 (рис. 66).

До виводів А1 та А2 приєднують міліамперметр для постійного струму , а кінцями С1 і С2 на одну мить доторкаються до джерела постійного струму (сухий елемент або акумулятор). Стрілка приладу повертається вправо або вліво. Тепер доторкаємося виводом В1 до мінуса , а В2 до плюса , стрілка повинна відхилитися в той же бік , що і в попередньому випадку . Якщо вона відхиляється в протилежний , то трубка з надписами В1 та В2 міняють місцями .

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.