Рефераты. Двигатели летательных аппаратов

4.2.1 Газодинамический расчёт идеального канала

1) Расчет термодинамических величин в канале и на его срезе.

 Наедем газовую постоянную:

где R0  = 8314 Дж/моль·кг - универсальная газовая постоянная;

Определяем удельный объем:

По результатам программы «Термодинамика»:

 Показатель процесса:

2) Расчет параметров критического сечения:

Степень расширения в критическом сечении канала:

Определим скорость потока в критическом сечении канала:

Удельный объём продуктов сгорания:

Находим удельную площадь критического сечения:

3) Расчет параметров на срезе сопла:

Определяем степень расширения на срезе канала:

Скорость потока на срезе канала,

,


По результатам программы «Термодинамика»:

Определяем удельную площадь сопла:

Геометрическая степень расширения сопла,

4) Расчет параметров двигателя:

Найдем удельный импульс на земле:

Расход топлива:

Определяем удельный импульс в пустоте:

Найдем тягу в пустоте:

Площадь критического сечения и среза сопла:

Определим расходный комплекс и коэффициент тяги:

4.2.2 Газодинамический расчёт реального канала

1). Расчет коэффициентов потерь

Коэффициент, учитывающий потери, связанные с недогоранием топлива: φк=0,97.

Коэффициент, учитывающий потери на рассеивание потока: φα = 0,992 для αс=10º -  угла полураскрытая сопла канала.

Коэффициент, учитывающий все остальные потери в закритической части канала: φw∞ = 0,98.

Коэффициент, учитывающий потери в закритической части канала в пустоте, φс∞:

Коэффициент, учитывающий потери в закритической части канала на земле, φс0:

где, Δφс – коэффициент, учитывающий влияние земного противодавления:

2). Расчет реальных параметров двигателя

Удельный импульс в пустоте:

Удельный импульс на земле:

Расход топлива:

Расход горючего и окислителя:

Площадь критического сечения и среза канала:

Диаметр критического сечения и среза канала:

                    

          


Тяга в пустоте:

Расходный комплекс и коэффициент тяги:



5. Определение габаритов топливных баков


Масса топлива, необходимого для обеспечения работы двигательной установки в течение времени полета определяется как:

,

где    – массовый расход топлива ДУ;

 кг/с;

    – коэффициент запаса топлива;

;

    – время работы ДУ;

с;

   Дополнительный запас топлива в баках, учитываемый коэффициентом , необходим для гарантированного обеспечения работы ДУ в течение заданного времени  при любых допустимых отклонениях расходов компонентов.

Масса топлива, необходимая для обеспечения работы ДУ равна:

 кг;

Масса горючего:

 кг;

Масса окислителя:

 кг;

Объем бака горючего:

 м3;

Объем бака окислителя:

 м3;

Коэффициент объема бака  учитывает объём газовой подушки, а так же наличие внутри бака конструкционных элементов

;

Для определения осевых габаритов баков ракеты в первом приближении, форма баков принимается цилиндрической.

 м;

 м;

где d – диаметр ступени ракеты, равный 1,5 м.

В действительности, форма баков отличается от цилиндрической. Это связано с кривизной днищ. Однако учет влияний этих факторов затруднен до проведения оценки габаритов всех элементов двигательной установки. Данные об осевых габаритах баков ракеты определяют высоту столба жидкого компонента, необходимую в дальнейшем для определения максимально допустимого числа оборотов ТНА из расчета насоса окислителя на кавитацию.

6. Определение основных параметров и габаритов насосов


6.1 Определение параметров насосов


Окислителем в двигательной установке является жидкий фтор. Для этого компонента целесообразно использовать радиальный шнеко-центробежный насос. Горючим является водород, для которого целесообразно использовать многоступенчатый центробежный насос.

Массовые расходы окислителя и горючего равны:

Из уравнения баланса мощностей известно:

Отсюда найдём реальные мощности насосов:

Потребные мощности насосов можно определить по формулам:

где  – КПД насосов окислителя и горючего, принимаемые приближённо равными 0,65, H – напор насосов:

где  – давления на выходе из насоса и на входе в насос.

Определим эти давления по следующим формулам:

Значения берутся из расчёта баланса мощностей, значение так же выбирается, но оно не должно быть меньше, чем  для компонента прокачиваемого через насос. Определим значения  для компонентов.

По [6] для  при температуре :

Для  при :

Выберем , соответствующие этим значениям, задаваемым при балансе мощностей.

Определим напоры насосов:

Зная напоры насосов, можно определить потребные мощности:

Определим максимальную угловую скорость для насосов из кавитационного коэффициента быстроходности:

где  – срывной коэффициент быстроходности; для выбранного типа насоса он принимается равным 3000.

Исходя из конструктивных соображений, примем , или . С учётом того, что насосы расположены на одном валу, скорость насоса горючего будет равна .

Определим коэффициент быстроходности насоса окислителя:

Данный насос является центробежным.

Примем количество ступеней насоса горючего равным 4. Ступени расположим последовательно. Тогда напор, создаваемый одной ступенью, будет равен:

Коэффициент быстроходности одной ступени будет равен:

Все ступени будут центробежными.

Определим крутящие моменты насосов окислителя и горючего:

Приняв , определим диаметр вала:

Из конструктивных соображений примем и диаметр втулки, равный

6.2 Определение параметров турбины


После определения параметров насосов: потребной мощности и угловой скорости вращения становится возможным определение параметров предкамерной турбины.

Мощность , потребляемая насосами ТНА равна:

Мощность, снимаемая с турбины, равна мощности потребляемой насосами:

Мощность , снимаемая с турбины, может быть выражена как:

где    – массовый расход газа через турбину;

    – Удельная адиабатная работа газа;

   – полный КПД турбины; для турбины, работающей по замкнутой схеме, в первом приближении величина выбирается как:

.

Удельная адиабатная работа газа в турбине определяется как:

где    – показатель адиабаты,

;

    – газовая постоянная рабочего тела турбины,  – температура рабочего тела турбины,     – давление газа на входе в турбину,  – степень понижения давления на турбине.

Параметры рабочего тела турбины ,,,,  назначаются по результатам расчета совместной работы турбины и .насосов в закрытой схеме,  – давление в камере сгорания, равное 15 МПа.

С учетом выбранных величин, удельная адиабатная работа газа в турбине равна:

Объемный расход газа на входе в колесо турбины равен:

 м3/с;

Коэффициент быстроходности турбины равен:

;

Степень парциальности предкамерной турбины равна:

Степень реактивности турбины задается из интервала:

;

Адиабатная скорость равна:

 м/с;

Соотношение окружной и адиабатной скоростей выбирается из условия обеспечения наибольшего окружного КПД турбины по графической зависимости:

;

При этом окружной КПД равен:

;

Окружная скорость турбины равна:

 м/с;

Средний диаметр турбины равен:

 м;

7. Построение профиля камеры сгорания


7.1 Профилирование докритической части канала

Расчёт докритической части канала, и построение профиля производится на основе эмпирических зависимостей.

1)     Определение приведенной и условной длины канала:

где критический диаметр подставляется в миллиметрах.

2)     Относительная площадь канала:

3)     Расчет размеров камеры:

-            объём камеры:

.

 - площадь поперечного сечения канала:

- радиус цилиндрической части канала:

 - длина конфузора:

где ρ=0,25*106*рк=3,75.

 - размеры конфузора:

 - объем конфузора:

 - длина цилиндрической части:


 - радиусы сопряжения:

7.2 Профилирование закритической части канала

Расчёт и построение закритической части канала производится по методу касательных (параболы). Эта методика изложена в [5].

Определим отношение площадей:


Для n=1,32 находим два ближайших к значения [3]:

           

          

Проинтерполируем значения:


Найдём длину закритической части канала,


Рисунок 1 – Профилирование канала методом параболы.

8. Определение параметров истекающего газового потока


Расчёт параметров по длине канала производится при некоторых средних значениях объёма и показателя политропы процесса.

Средняя газовая постоянная процесса:

,

Подставив значения получим:

Средние удельные объёмы в канале и на срезе канала :

Средний показатель процесса :

Значения относительного текущего уширения находятся по формуле:

,

где  

Pi – давление в i-том сечении канала.

Задаемся значениями πi в интервале от 1 до 0, что соответствует изменению давления от Pк до Pc и построим вспомогательный график

Рисунок 2 – Вспомогательный график


Расчеты параметров производим по следующим выражениям:

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.