Рефераты. Динамическое представление данных

Динамическое представление данных

 

 

 

 

Р Е Ф Е Р А Т

 

на тему :


“ Динамическое представление сигналов “

 

 

 

 

 

 

 

 

 

Слушателя 727 группы Зазимко С.А.

 

 


 

Динамическое представление сигналов.

Многие задачи радиотехники требуют специфической формы представления сигналов. Для решения этих задач необходимо располагать не только мгновенным значением сигнала, но и знать как он ведет себя во времени, знать его поведение в “прошлом” и “будущем”.

ПРИНЦИП ДИНАМИЧЕСКОГО ПРЕДСТАВЛЕНИЯ.


Данный способ получения моделей сигналов заключается в следующем. Реальный сигнал представляется суммой некоторых элементарных сигналов, возникающих в последовательные моменты времени. Теперь, если мы устремим к нулю длительность отдельных элементарных сигналов, то в пределе получим точное представление исходного сигнала. Такой способ описания сигналов называется динамическим представлением , подчеркивая тем самым развивающийся во времени характер процесса.

Широкое применение нашли два способа динамического представления.

Первый способ в качестве элементарных сигналов использует ступенчатые функции, которые возникают через равные промежутки времени D (рис. 1.1). Высота каждой ступеньки равна приращению сигнала на интервале времени D.

При втором способе элементарными сигналами служат прямоугольные импульсы. Эти импульсы непосредственно примыкают друг к другу и образуют последовательность, вписанную в кривую или описанную вокруг нее (рис. 1.2).

рис 1.1 рис 1.2

Рассмотрим свойства элементарного сигнала, используемого для динамического представления по первому способу.

ФУНКЦИЯ ВКЛЮЧЕНИЯ .

Допустим имеется сигнал, математическая модель которого выражается системой :

ì 0, t < -x,

u(t)= í 0.5(t/x+1), -x £ t £ x, (1)

î 1, t > x.

Такая функция описывает процесс перехода некоторого физического объекта из “нулевого” в “единичное” состояние. Переход совершается по линейному закону за время 2x. Если параметр x устремить к нулю, то в пределе переход из одного состояния в другое будет происходить мгновенно. Эта математическая модель предельного сигнала получила название функции включения или функции Хевисайда :

ì 0, t < 0,

s(t) = í 0.5, t = 0, (2)

î 1, t > 0.


В общем случае функция включения может быть смещена относительно начала отсчета времени на величину t0. Запись смещенной функции такова :

ì 0, t < t0,

s(t - t0) = í 0.5, t = t0, (3)

î 1, t > t0.

 

ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПРОИЗВОЛЬНОГО

СИГНАЛА ПОСРЕДСТВОМ ФУНКЦИЙ ВКЛЮЧЕНИЯ.

 

Рассмотрим некоторый сигнал S(t), причем для определенности скажем, что S(t)=0 при t<0. Пусть {D,2D,3D,...} - последовательность моментов времени и {S1,S2,S3,...} - отвечающая им последовательность значений сигнала. Если S0=S(0) - начальное значение, то текущее значение сигнала при любом t приближенно равно сумме ступенчатых функций :

¥

s(t)»s0s(t)+(s1-s0)s(t-D)+...=s0s(t)+å(sk-sk-1)s(tkD).

k=1

·       Если теперь шаг D устремить к нулю. то дискретную переменную kD можно заменить непрерывной переменной t. При этом малые приращения значения сигнала превращаются в дифференциалы ds = (ds/dt) dt , и мы получаем формулу динамического представления произвольного сигнала посредством функций Хевисайда

¥

ó ds

S(t)=s0 s(t)+ ô s(t-t) dt (4)

õ dt

0


Переходя ко второму способу динамического представления сигнала , когда элементами разложения служат короткие импульсы, следует ввести новое важное понятие.

ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛА ПОСРЕДСТВОМ ДЕЛЬТА-ФУНКЦИЙ.


Рассмотрим импульсный сигнал прямоугольной формы, заданный следующим образом :

1 é x x ù

u(t;x) = ----- ê s (t + ---- ) - s (t - ---- ) ÷ (5) x ë 2 2 û



При любом выборе параметра x площадь этого импульса равна единице :

¥

П = ò u dt = 1

- ¥


Например, если u - напряжение, то П = 1 В*с.

Пусть теперь величина Е стремится к нулю. Импульс, сокращаясь по длительности, сохраняет свою площадь, поэтому его высота должна неограниченно возрастать. Предел последовательности таких функций при x ® 0 носит название дельта-функции , или функции Дирака :


d(t) = lim u (t;x)

x®0


Теперь вернемся к задаче описания аналогового сигнала суммой примыкающих друг к другу прямоугольных импульсов (рис. 2) . Если Sk - значение сигнала на k - ом отсчете, то элементарный импульс с номером k представляется как :

hk(t) = Sk [ s(t - tk) - s(t - tk - D) ] (6)

В соответствии с принципом динамического представления исходный сигнал S (t) должен рассматриваться как сумма таких элементарных слагаемых :

¥

S(t) = å h (t) (7)

k= - ¥ k


В этой сумме отличным от нуля будет только один член, а именно тот, что удовлетворяет условию для t :


tk < t < t k+1


Теперь, если произвести подстановку формулы (6) в (7) предварительно разделив и умножив на величину шага D, то


¥ 1

S(t) = å Sk --- [ s(t - tk) - s(t - tk - D) ] D

k=- ¥ D


Переходя к пределу при D ® 0 , необходимо суммирование заменить интегрированием по формальной переменной t, дифференциал которой dt ,будет отвечать величине D . Поскольку


1

lim [ s(t - tk) - s(t - tk - D) ] ---

D®0 D


получим искомую формулу динамического представления сигнала


¥

S(t) = ò s (t) d(t - t) dt

- ¥


Итак, если непрерывную функцию умножить на дельта-функцию и произведение проинтегрировать по времени, то результат будет равен значению непрерывной функции в той точке, где сосредоточен d - импульс. Принято говорить, что в этом состоит фильтрующее свойство дельта-функции.[1]






Обобщенные функции как математические модели сигналов.


В классической математике полагают, что функция S(t) должна принемать какие-то значения в каждой точке оси t . Однако рассмотренная функция d(t) не вписывается в эти рамки - ее значение при t = 0 не определено вообще, хотя эта функция и имеет единичный интеграл. Возникает необходимость расширить понятие функции как математической модели сигнала. Для этого в математике была введено принципиально новое понятие обобщенной функции.

В основе идеи обобщенной функции лежит простое интуитивное соображение. Когда мы держим в руках какой-нибудь предмет , то стараемся изучить его со всех сторон, как бы получить проекции этого предмета на всевозможные плоскости. Аналогом проекции исследуемой функции ¦(t) может служить, например, значение интеграла


¥

ò ¦(t) j(t) dt (8)

- ¥

при известной функции j(t) , которую называют пробной функцией.

Каждой функции j(t) отвечает, в свою очередь, некоторое конкретное числовое значение. Поэтому говорят, что формула (8) задает некоторый функционал на множестве пробных функций j(t). Непосредственно видно, что данный функционал линеен, то есть


(¦, aj1 + bj2) = a(¦,j1) + b(¦,j2).


Если этот функционал к тому же еще и непрерывен, то говорят, что на множестве пробных функций j(t) задана обобщенная функция ¦(t) [2]. Следует сказать, что данную функцию надо понимать формально-аксиоматически, а не как предел соответствующих интегральных сумм.

Обобщенные фнкции , даже не заданные явными выражениями, обладают многими свойствами классических функкций. Так, обобщенные функции можно дифференцировать.






И в заключение следует сказать, что в настоящее время теория обобщенных функций получила широкое развитие и многочисленные применения. На ее основе созданы математические методы изучения процессов, для которых средства классического анализа оказываются недостаточными.


[1] Отсюда вытекает структурная схема систем, осуществляющей измерение мгновенных значений аналогового сигнала S(t). Система состоит из двух звеньев : перемножителя и интегратора.


[2] Обобщенные функции иногда называют также распределениями.





2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.