Рефераты. Четырехполюсники, электрические фильтры  




Поскольку коэффициенты формы А, в общем случае, являются комплексными числами, зависящими от частоты, постольку выражение в скобках (1.6) можно записать в алгебраической форме:



где а(ω) – действительная часть;

b(ω) – мнимая часть.

После этого связь входного и выходного напряжений (1.6) можно выразить следующим образом:

(1.7)

 
 



Для определения ФЧХ 4х-П за начало отсчета сдвига фаз между входным и выходным напряжениями примем вектор выходного напряжения , который направим по оси абсцисс, т.е. горизонтально.

При таком выборе начала отсчета положение вектора  на комплексной плоскости целиком определяется величинами а(ω)и b(ω) и их знаками:


(1.8)

 









Расчет ФЧХ по (1.8) дает сдвиг фаз, выраженный в радианах. Ключ для определения этого угла показан на Рис.1.5:


j

 


φ


0               +


-j

Рис.1.5. Ключ для определения сдвига фаз между входным и выходным напряжениями


На основании (1.7) комплексная передаточная функция по напряжению произвольного 4х-П с известными коэффициентами формы А и нагруженного активным сопротивлением R, принимает вид:

(1.9)

 
 



Модуль передаточной функции 4х-П, т.е. его АЧХ:

(1.10)

 




Таким образом, по формулам (1.8) и (1.10) можно рассчитать АЧХ и ФЧХ любого 4х-П при известных коэффициентах формы А и нагрузке R.


Пример 1.1. Задана электрическая схема Г-образного 4х-П (Рис.1.6) и его параметры R, L, C. Данный 4х-П подключен к источнику синусоидального напряжения. Необходимо найти формулы для расчета АЧХ и ФЧХ этого 4х-П.


L

1                       2

Z1


Z2    C       R




 


1’                      2’


Рис.1.6. Электрическая схема г-образного 4х-П, нагруженного активным сопротивлением R


Решение. Комплексные сопротивления плеч 4х-П:



Коэффициенты формы А (1.3):



Комплексная передаточная функция:



Модуль передаточной функции:

(1.11)

 




где


Фазо-частотная характеристика


(1.12)

 
 




Таким образом, при известных значениях R, L, C-элементов по формулам (1.11), (1.12) можно рассчитать и построить графики АЧХ и ФЧХ Г-образного 4х-П, изображенного на Рис.1.6.


1.5 Каскадное соединение четырехполюсников


Рассмотрим так называемое каскадное соединение 4х-П (Рис.1.7), при котором входные зажимы каждого последующего 4х-П присоединяются к выходным зажимам предыдущего.





Рис.1.7. Каскадное соединение 4х-П


Эти два 4х-П, взятые вместе, можно рассматривать как один эквивалентный.

Определим параметры эквивалентного 4х-П через известные параметры первого и второго четырехполюсников.

Пусть заданы матрицы коэффициентов формы А двух каскадно соединенных 4х-П.

Из теории известно, что матрица коэффициентов формы А двух каскадно соединенных 4х-П равна произведению матриц отдельных 4х-П:



Это правило, распространяется на случай каскадного соединения любого числа 4х-П. При этом матрицы, подлежащие перемножению, записываются в порядке следования 4х-П, т.к. умножение матриц не подчиняется переместительному закону.


1.6 Одноэлементые четырехполюсники


Простейшими 4х-П являются одноэлементные 4х-П, состоящие из последовательного (Рис.1.8а) и параллельного (Рис.1.8б) двухполюсника.





Z1                                        Z2


а)                                                               б)

Рис.1.8. Одноэлементный 4х-П


Матрицы коэффициентов формы А одноэлементных 4х-П:




С помощью этих матриц М1 и М2 можно получить коэффициенты формы А любого 4х-П, построенного по лестничной схеме. Для этого необходимо перемножить матрицы М1 и М2 столько раз, сколько раз встречаются параллельный и последовательный 2х-П.

Например, коэффициенты формы А Г-образного 4х-П получаются после перемножения матриц М1 и М2 (см.1.3):




Глава 2. Электрические фильтры нижних частот

 

2.1 Основные определения и классификация электрических фильтров


Электрическим фильтром называется устройство, при помощи которого электрические колебания разных частот отделяются друг от друга. Электрический фильтр представляет собой пассивный 4х-П, пропускающий сигналы в некоторой полосе частот с малым затуханием, а за пределами этой полосы сигналы проходят в нагрузку с большим затуханием.

Полоса частот, в пределах которой передаточная функция по напряжению (1.10) принимает не менее заданного значения

называется полосой пропускания. Остальная область частот называется полосой задерживания. Частоты, разделяющие эти полосы, называются граничными.

В зависимости от пропускаемого спектра частот фильтры разделяются на:

l   фильтры нижних частот (ФНЧ);

l   фильтры верхних частот (ФВЧ);

l   полосовые фильтры (ПФ);

l   заграждающие фильтры (ЗФ).

В зависимости от электрической схемы фильтры разделяются на Г-образные, Т-образные, П-образные и другие.

В зависимости от числа реактивных элементов, входящих в состав фильтра, различают фильтры первого порядка, второго порядка и т.д.

По составу элементов фильтры делятся на активные и пассивные. Активные фильтры содержат источники электрической энергии, а пассивные их не содержат.

По способу обработки сигналов фильтры делятся на аналоговые и цифровые.

В данном курсе рассматриваются только пассивные электрические фильтры, построенные на идеальных линейных R, L, C-элементах.

 

2.2 Общий принцип действия линейных пассивных электрических фильтров


Рассмотрим электрический фильтр, частотные характеристики которого известны и описываются формулами (1.8)и (1.10).

Пусть на вход данного фильтра поступает сигнал в виде суммы различных частот



Определим структуру сигнала на выходе фильтра.

В силу линейности фильтра, сигнал на выходе будет также представлять сумму синусоидальных напряжений. При этом изменятся амплитуды и начальные фазы составляющих, а частоты составляющих на выходе фильтра одинаковы:



Амплитуды составляющих на выходе определяются передаточной функцией фильтра (1.10):



Сдвиг фаз между входным и выходным напряжениями определяется фазо-частотной характеристикой фильтра (1.8):


В дальнейшем будем полагать, что на вход фильтра подается синусоидальное напряжение, частота которого изменяется от нуля до бесконечности.


2.3 Общая характеристика фильтров нижних частот


Фильтры нижних частот (ФНЧ) предназначены для пропускания в нагрузку сигналов малой частоты и подавления сигналов большой частоты.

Полоса пропускания ФНЧ определяется его граничными частотами:

f1=0 – нижняя граница полосы пропускания;

f2   - верхняя граница полосы пропускания, которая определяется назначением данного конкретного фильтра.

В теории фильтров рассматриваются идеальные и реальные фильтры. Идеальным ФНЧ называется фильтр, передаточная функция которого (1.10) в полосе пропускания равна единице, а за пределами полосы пропускания она равна нулю:



Передаточная функция реального фильтра в полосе пропускания не равна единице, а в полосе задерживания - не равна нулю.

Передаточные функции по напряжению идеального и реального фильтров нижних частот показаны на Рис.2.1.

H(f)

Передаточная функция идеального ФНЧ


Передаточная функция реального ФНЧ

H1

Полоса

пропускания  Полоса задерживания


H22

f2         f22                  f


Рис.2.1. Передаточные функции идеального и реального фильтров нижних частот


Количественную оценку избирательности фильтра целесообразно производить с помощью коэффициента прямоугольности передаточной функции по напряжению или мощности.

Для расчета коэффициента прямоугольности передаточной функции фильтра введем в рассмотрение передаточную функцию по мощности, которую определим следующим образом.

Максимально возможная мощность, которая может быть выделена в нагрузке в случае идеального фильтра, определяется по формуле:

(2.1)

 

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.