Рефераты. Цифровой измеритель времени

Цифровой измеритель времени

Министерство Образования РБ

Белорусский Государственный Университет Информатики и Радиоэлектроники

Кафедра ЭВС



К защите допускаю

“ “ ________ 2001 г.

Руководитель работы

Давыдов А.Б.



Пояснительная записка

к курсовому проекту на тему:

“Цифровой измеритель

времени”




Выполнил:

Студент гр. 810702

Демух А.

Проверил:

Давыдов А.Б






Минск 2001 г.

Содержание


Введение

1 Анализ задачи

2 Функции выполняемые системой

3. Интерфейс Система-пользователь

4 Выбор соотношения между аппаратной и программной частями.

5. Проектирование аппаратных средств системы. Разработка функциональной и принципиальной схемы системы

6. Описание работы системы по принципиальной схеме.

6.1. Формирование адреса и данных.

6.2 Принцип работы устройства ввода информации.

6.3. Обмен информацией в системе.

6.4. Схема сброса устройства

6.5. Подключение схем индикации

7. Программа

Заключение

Литература


Введение

В настоящее время благодаря широкому распространению дешёвых микрокомпьютеров их влияние на повседневную жизнь усиливается с каждым годом. В домах появляются различные устройства и приспособления, имеющие целью повысить жизненный уровень населения, украсить их быт, автоматизировать многие процессы в повседневной жизни, упростить и зачастую попросту обезопасить жизнь людей.

Несмотря на то, что первые электронные цифровые вычислительные машины появились сравнительно недавно, ЭВМ приобретают всё большее и большее значение в повседневной жизни.

В настоящее время благодаря широкому распространению дешёвых микрокомпьютеров можно ожидать, что в недалёком будущем их влияние ещё больше усилиться.

Конструирование электронных схем из конденсаторов и резисторов состоит в определении параметров этих компонентов, измеряемых фарадами и омами, а также в уточнении ограничений по напряжению и мощности. Их функциональные и эксплуатационные характеристики заранее известны.

Микрокомпьютер, в отличие от других компонентов не обладает фиксированным набором функциональных характеристик. Его характеристики определяются во время проектирования системы с помощью процесса, называемого программированием. Практически неограниченный диапазон программируемых функциональных возможностей микрокомпьютера придаёт этому компоненту особое значение.

Проектирование аппаратуры и программного обеспечения должно проводиться на системной основе с целью минимизации, как стоимости проектирования, так и времени, затрачиваемого на разработку.

Таким образом, основываясь на общих положениях, изложенных выше, можно сделать заключение, что система, спроектированная с помощью и на основе микропроцессора, будет в большей мере соответствовать требованиям нынешнего времени и быть более дешёвой, по сравнению с системой, реализованной на дискретных элементах.

1. Анализ задачи


Исходя из снижения себестоимости устройства, необходимо спроектировать систему , которая отвечала бы требуемым параметрам и одновременно была недорогой. В ходе изучение задания, делаем следующие выводы:

1: Устройство должно быть максимально простым в использовании, так как будет использоваться преимущественно рядовыми сотрудниками;

2: Необходимо использовать наиболее дешёвые элементы и компоненты с целью снижения себестоимости устройства, тем не менее, они должны удовлетворять заданному условию по точности получаемого результата;

3: Необходимо оптимально разделить ресурсы между программной и аппаратной частями устройства с целью снижения стоимости/ повышения быстродействия/создания запаса по точности ;

4: Необходимо создать защиту устройства от неквалифицированного пользователя;

5: Предусмотреть возможность модернизации устройства.

Для выбора компонентов устройства, необходимо знать критерии их выбора. По условию задания, необходимо в качестве «ядра» устройства использовать микропроцессор 8086. Для данной системы это оптимальный вариант: при малой цене он обладает достаточной производительностью (многое ещё зависит от состава микропроцессорной системы и качества программы «зашитой» в ПЗУ). В данной схеме можно обойтись без применения дополнительных контроллеров ввода/вывода, так как в этом нет необходимости - микропроцессор сам может формировать сигнал обращения к памяти или портам ввода/вывода, а также сигналы чтения /записи, тем более что нет необходимости обрабатывать прерывания от внешних устройств.

Также необходимо наличие портов ввода/вывода, набора регистров, обязательно наличие шинных формирователей, схем индикации для отображения информации, ОЗУ, ПЗУ, таймера а также дискретных элементов. Для вывода информации достаточно четырёх восьмисегментных схем индикации (семь сегментов + точка).


2. Функции, выполняемые системой


Анализируя условие задания можно выделить следующие функции, выполняемые системой:

1: Функция хранения полученных в ходе работы устройства данных. Данную функцию выполняет блок оперативной памяти. Блок оперативной памяти устройства в связи с этим должен обладать следующими свойствами ( в идеале):

а) достаточным для данного устройства объёмом ОЗУ;

б) достаточным быстродействием ;

в) высокой надёжностью;

г) низкой потребляемой мощностью;

д) возможностью дальнейшего наращивания .

2: Функция хранения «драйвера» устройства. Эту функцию выполняет блок ПЗУ. В связи с этим данный блок должен характеризоваться следующими параметрами (в идеале):

а) достаточным для данной программы объёмом;

б) возможностью перезаписи с целью улучшения работы «драйвера» устройства (применение новых алгоритмов, расширения диапазона применения);

в) низкой потребляемой мощностью;

г) высоким быстродействием;

д) требования надёжности .

3: Функция информационного обмена. Эту функцию выполняет блок ввода-вывода. К этому блоку предъявляются следующие требования (в идеале):

а) высокое быстродействие;

б) функциональная завершённость;

в) возможность работы при отсутствии внешнего контроллера.

4: Функция диалога система – пользователь. Эту функцию реализует система индикации и система ввода информации. К ним         предъявляются следующие требования (в идеале):

а) достаточная яркость изображения;

б) защита от неправильного ввода информации;

5: Функция обработки поступаемых данных. Микропроцессор Intel 8086. Вследствие этого, основными требованиями к этим компонентам микропроцессорной системы являются требования по точности и быстродействию.


3. Интерфейс: Система – пользователь


Интерфейс оператор – система осуществляется при помощи системы индикации (для отображения полученной информации) и системы ввода информации для задания параметров обработки поступающей информации.

Необходимо отметить, что интерфейс должен быть простым и доступным для неквалифицированного пользователя.

4. Выбор соотношения между аппаратной и программной частями


При выборе соотношения между аппаратной и программной частью устройства необходимо руководствоваться прежде всего теми требованиями к устройству, которые предъявляются в ТЗ на данное устройство. Для получения высокого быстродействия, естественно, лучше будет если все компоненты системы будут реализованы аппаратно, что в свою очередь увеличит стоимость изделия в целом. Необходимо найти такое соотношение между программной и аппаратной частями, для которого при достаточной производительности, будет наименьшая стоимость изделия. В нашем случае можно предложить следующий вариант:

1: Блок хранения полученных в ходе работы устройства данных.

Данный блок реализуется аппаратно в виде набора микросхем ОЗУ.

2: Блок хранения «драйвера » устройства.

Данный блок реализуется аппаратно в виде набора микросхем ПЗУ.

3: Блок информационного обмена.

Данный блок реализуется аппаратно в виде набора портов ввода – вывода.

4: Блок диалога система – пользователь.

Данный блок реализуется аппаратно в виде набора схем индикации и клавиатуры.

5: Блок управления и анализа сигналов.

Данный блок реализуется аппаратно в виде микропроцессора Intel 8086 и программно в виде программы алгоритма работы микропроцессора.

6: Блок получения данных для последующей обработки.

Данный блок реализован аппаратно в виде дискретных элементов и таймера.

5. Проектирование аппаратных средств системы. Разработка функциональной и принципиальной схемы системы

В нашем курсовом проекте используется в качестве управляющего ядра отечественный аналог микропроцессора 8086 процессор К1810ВМ86 (далее просто ВМ86). Данный микропроцессор выполнен в едином сорокавыводном корпусе, по n-МОП-технологии. Потребляет данная микросхема 1.7 Вт, и питается от источника питания +5В.

Микропроцессор содержит четырнадцать 16-битовых внутренних регистра, и образует 16-битовую шину данных. Шина адреса имеет двадцать линий, что позволяет адресовать до одного мегабайта.

Назначение выводов микропроцессора ВМ86 приведено в таблице 5.1.


Таблица 5.1- назначение выводов микропроцессора ВМ86

Обозначения

Назначение

Тип

Линии шины адреса/данных

Линии адреса/состояния

Разрешение старшего байта шины/состояния

Чтение, МП выполняет цикл чтения

Готовность, адресованное устройство готово к взаимодействию с МП

Запрос прерывания

Немаскируемое прерывание

Входной сигнал, проверяемый командой WAIT

Тактовые импульсы

Сброс, заставляет МП немедленно прекратить выполняемые действия

Минимальный/максимальный режим работы

Выход

Выход

Выход

Выход

Вход

Вход

Вход

Вход

Вход

Вход

Вход


Для нормального функционирования микроЭВМ недостаточно управляющих сигналов, генерируемых микропроцессором. МикроЭВМ в каждом машинном цикле должна получать более полную информацию о состоянии МП.

Для принятия и передачи данных и команд микропроцессору необходимы вспомогательные микросхемы, входящие в состав комплекта. Приведём и их основные характеристики.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.