Рефераты. Цифровая радиолиния КИМ-ЧМ-ФМ


где j - девиация фазы на последней ступени модуляции; Р(1) – вероятность появления единиц в сигнале КИМ; t0 – длительность элементарного символа.

Спектр сигнала изображён для случая, когда Р(1)=Р(0). В том случае, когда Р(1)¹Р(0), форма спектра на частотах w0±w1 и w0±w2.


4.2. Описание функциональной схемы передатчика.


В нашей разрабатываемой совмещённой командной радиолинии есть одна особенность: на борту летательного аппарата будет находиться не только приёмник, но и передатчик, который будет передавать информацию иного рода, чем мы ему посылаем: это может быть телеметрическая информация, фотографии (цифровые) местности и т.п.


Рис. 6. Структурная схема передающей части


В простейшем случае работу передатчика можно объяснить следующим образом. На вход коммутатора Ком1 поступают N передаваемых сообщений U1(t), U2(t). С помощью АЦП они преобразуются в цифровой код. Преобразователь кода ПК служит для преобразования кода в последовательный. Схема синхронизации (СС) управляет работой передающей части и вырабатывает следующие сигналы:

1.                  Сигналы управления коммутатором Ком 1. Эти сигналы имеют частоту повторения, определяемую верхней частотой спектра передаваемых сообщений;

2.                  Сигналы управления АЦП;

3.                  Сигналы управления преобразователем кода ПК;

4.                  Сигнал кадровой синхронизации. Как правило, в качестве сигнала синхронизации используется m-последовательность, длина которой больше или равна ½ длины информационной части.

С помощью сумматора (+) формируется сигнал на видеочастоте (рис.7.).



На рисунке: Тсс – длительность слова синхронизации, Ткс – длительность командного слова, t0 – длительность элементарного символа КИМ.

В групповом сигнале символы следуют с тактовой частотой fт, которая определяется задающим тактовым генератором системы синхронизации. С помощью коммутатора КОМ 2 символ "1" заполняется меандром с частотой f1, а символ "0" – меандром с частотой f2. В результате получается сигнал КИМ-ЧМ, который затем подаётся на фазовый модулятор (ФМ). Сигнал на поднесущей модулирует по фазе колебание на несущей частоте w0. Усилитель мощности усиливает полученный сигнал КИМ-ЧМ-ФМ для обеспечения необходимого коэффициента усиления всего передатчика. Антенно-фидерный тракт осуществляет согласование антенны с передатчиком.


4.3 Описание функциональной схемы приёмника


Структурная схема приёмной части радиолинии изображена на рис.8 .


Рис. 8. Структурная схема приемной части


В высокочастотной части приёмной стороны происходит перенос несущей частоты на промежуточную. Формирователь опорного напряжения


 
 


Рис. 9. Формирователь опорного напряжения


ФОН выполняется на основе ФАПЧ (рис.9.) или следящего фильтра.

На выходе управляемого генератора (УГ) устанавливается сигнал, частота и фаза которого совпадают с частотой и фазой принимаемого сигнала. Если в качестве опорного напряжения использовать сигнал Uоп=cosw0t, то на выходе фазового детектора будет сигнал КИМ-ЧМ. Далее этот сигнал поступает на полосовые фильтры. Полосовые фильтры ПФ1 и ПФ2 настроены на поднесущие частоты f1 и f2.

На выходе схемы разности формируется групповой сигнал, искажённый шумами. С помощью решающего устройства РУ происходит определение символа. Решающее правило имеет вид:

Если Ux>0, то Ux=1,

Если Ux<0, то Ux=0.

С нулевым порогом сравниваются отсчёты сигнала, снимаемые с выхода схемы разности. РУ можно выполнить в виде интегратора и порогового устройства. Обеспечение разделения элементарных символов, соответствующих различным позициям кодового слова, производится с помощью посимвольной системы синхронизации.

На выходе вычитающего устройства стоит система пословной синхронизации.

Сигналы с выхода формирователя поступают на распределитель каналов. После этого каждый сигнал из КИМ сигнала с помощью ЦАП преобразовывают в аналоговую форму.

Система тактовой синхронизации необходима для того, чтобы опрашивать решающее устройство в моменты времени, соответствующие середине символа. Момент опроса может регулироваться выбором величины линии задержки. Работает система тактовой синхронизации следующим образом. Видеосигнал со схемы разности поступает на дифференцирующую цепочку ДЦ. Продифференцированный сигнал поступает на формирователь Ф, с помощью которого из импульсов, соответствующих передним и задним фронтам, формируются импульсы длительностью t0/2. Дифференцирование и последующее формирование необходимо для получения в спектре сигнала составляющей на частоте fт. Эта спектральная составляющая выделяется узкополосным резонансным фильтром УРФ. С помощью линии задержки ЛЗ происходит выбор оптимального момента стробирования.

С выхода РУ снимается поток решений о символах, представляющий собой поток элементарных символов. С помощью системы кадровой синхронизации происходит формирование колебаний с частотой следования кадров. Согласованный фильтр СФ согласован с m-последовательностью, которая используется для кадровой синхронизации. Выходные импульсы СФ, сформированные по амплитуде и длительности формирователем, сравниваются в цифровом фазовом детекторе с колебаниями местного генератора. Управляющий сигнал, изменяющий частоту местного генератора, снимается с ФНЧ. Меандр с выхода местного генератора управляет работой распределителя каналов РК, т.е. управляет распределением принимаемой информации по потребителям.

5.                 Конструкция бортового приемника

Современные воздушные летательные аппараты могут перемещаться в атмосфере с огромными скоростями, что создает для работы антенн сложные условия.

При большой скорости полета наблюдается значительный аэродинамический нагрев корпуса Л.А. Наиболее интенсивно нагреваются лобовые части аппарата, на которые набегает воздушный поток. Этот нагрев в полной мере испытывают антенны, так как они располагаются либо заподлицо с обшивкой Л.А. (невыступающие антенны), либо на обшивке Л.А.(наружные антенны).

При проектировании антенн для Л.А., в особенности при выборе места их размещения на корпусе Л.А., необходимо учитывать, что при достаточно большой электронной концентрации плазма может оказать работу антенн сильное влияние, вплоть до полного нарушения работы радиолинии.

К антеннам, устанавливаемым на летательных аппаратах, предъявляется комплекс радиотехнических, механических и температурных требований, вытекающих как из назначения самой аппаратуры, так и из условий работы антенны. Рассмотрим эти требования.

1) Аэродинамическое (лобовое) сопротивление. Антенны, устанавливаемые на ЛА, предназначенных для полета в плотных слоях атмосферы, должны иметь минимально возможное лобовое сопротивление. Предпочтения заслуживают антенны, установленные вдоль воздушного потока. Наилучшим решением является применение невыступающих антенн.

2) Размеры и вес. Как и все оборудование, устанавливаемое на ЛА, антенны должны обладать минимальным весом. Уменьшение веса достигается не только уменьшением размеров антенны, но также использованием облегченных, например полых и сетчатых, конструкций антенн и применением для них более легких материалов, например алюминия и его сплавов, а также пенистых диэлектриков.

3) Механические требования. Антенны ЛА должны обладать большой механической прочностью, устойчиво работать при воздействии механических ударов и выдерживать значительные перегрузки. Кроме того, не должны наблюдаться механические резонансы конструкций антенн и существенное изменение их электрических параметров при воздействии вибраций. Механические требования удовлетворяются прежде всего применением в конструкциях антенн высокопрочных металлов и диэлектриков, а также путем придания антеннам жесткой конструкции.

4) Температуростойкость. Антенны должны быть рассчитаны для надежной работы в условиях высоких температур, вызванных аэродинамическим нагревом летательного аппарата. Это достигается применением в конструкциях антенн жаростойких материалов. Антенны должны быть также рассчитаны для работы в условиях низких температур. Здесь следует учитывать, что некоторые материалы при низких температурах становятся хрупкими и поэтому непригодны для применения на летательных аппаратах.

Щелевые антенны являются одним из типов антенн, наиболее часто применяемых на ЛА в диапазоне ультракоротких волн. Место установки щелевых антенн на корпусе ЛА и число антенн, входящих в антенную систему, зависят от требуемых направленных свойств. В радиолиниях телеметрии и командного управления обычно требуется ненаправленное излучение, поэтому находят применение круговые решетки щелей, расположенных по периметру цилиндрической части корпуса ЛА.

Применение кольцевой волноводно-щелевой антенны наталкивается на очевидные конструктивные трудности. Если расположить волновод под обшивкой ЛА, так чтобы его наружная поверхность вплотную прилегала к внутренней поверхности обшивки, то в ней нужно по периметру корпуса прорезать большое число щелей, что значительно ослабит механическую прочность корпуса. Можно не нарушать целостности обшивки, предусматривая в ней паз, в котором с наружной стороны уложен кольцевой волновод. Это, однако, усложняет конструкцию самого корпуса ЛА. При большом диаметре ЛА волноводно-щелевая антенна имеет значительный вес, что также является ее недостатком.

Достоинством волноводно-щелевой антенны является возможность получения в азимутальной плоскости диаграмм направленности без глубоких провалов. Как следует из теории круговых решеток, для этого необходимо расположить соседние щели достаточно близко друг к другу.

В виду указанных выше недостатков кольцевой волноводно-щелевой антенны преимущественно применяется следующий способ питания щелевых излучателей. Он состоит в том, что по периметру корпуса ЛА размещаются несколько одиночных излучателей, которые питаются с помощью делителей мощности, направленных ответвителей и других волноводных узлов, а также разветвленной фидерной системы питания.

Рассмотрим конструкцию бортового приемника. К бортовой аппаратуре применяются очень жесткие и в то же время противоречивые требования

·     жесткая ограниченность габаритов и массы

·     ограничения в энергопотреблении

·     способность работы в вакууме

·     стойкость к мощным тепловым ударам

·     стойкость к совместному действию вибрационных и линейных нагрузок чрезвычайно высокая надежность

Рассмотрим климатические факторы, влияющие на бортовую аппаратуру и их последствия.

1) Повышенная температура - высыхание защитных покрытий с растрескиванием, миграция примесей в полупроводниках, изменение электрических характеристик радиоэлементов, деформация деталей.

2) Пониженная температура - изменение электрических характеристик радиоэлементов, деформация деталей конденсация влаги.

3) Повышенная влажность - увеличение паразитных емкостей, снижение сопротивления диэлектриков, опасность термоудара.

4) Пониженное давление - снижение пробивного напряжения волноводов, печатного монтажа, ухудшение теплоотдачи.

5) Солнечная радиация - старение диэлектриков и разрушение покрытий.

6) Механический фактор:

-вибрации

-удары

-ускорения

-акустические шумы


6. Заключение


В данном курсовом проекте была разработана радиолиния КИМ-ЧМ-ФМ, которая полностью удовлетворяет заданным техническим характеристикам.

Использование трехступенчатой модуляции позволяет работать на дальностях до сотен миллионов километров со скоростью передачи информации порядка сотен бит.

7. Используемая литература

1) Основы радиоуправления. Под ред. В. А. Вейцеля и В. Н. Типугина. Учебное пособие для вузов. М., " Сов. Радио", 1973.

2) Теория и проектирование радиосистем. Под ред. В. Н. Типугина. Учебное пособие для вузов. М ., " Сов. Радио", 1977.

3) Пенин П. И. Системы передачи цифровой информации. Учебное пособие для вузов. М ., "Сов.радио", 1976.

4) Система передачи цифровой информации КИМ-ОФМН-ФМ: Методические указания к лабораторной работе / Рязань гос. радиотехн. Акад.: Сост.: В. С. Паршин, М. В. Кулакова. Рязань , 1995.

5) Радиосистемы передачи информации: Учеб. Пособие для вузов / И. М. Тепляков, Б. В. Рощин и др. Радио и связь, 1982.

6) Езерский В. В. Курс лекций, 2003.

7) Егоров А. В. Курс лекций, 2004.

8) Паршин В. С. Курс лекций, 2003.

Размещено на


Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.