Рефераты. Аппаратные средства p> 1.3 ПРОЦЕССОР i80286

Презентация IBM персонального компьютера AT в 1984 году сфокусировала все внимание на другой микропроцессор - i80286. Сам по себе микропроцессор был представлен еще в 1982 году. Естественно у 8086 и 80286 много общего, но i80286 обладает такими дополнительными качествами, которые сразу привлекли пристальное внимание всех связанных с компьютерной индустрией.
Новый микропроцессор использует полную 16-разрядную шину данных и 16-битные внутренние регистры. Он был разработан для работы с частотой в 6 Мгц, а затем 8 и 10 Мгц. Более того, i80286 способен реализовывать свои функции быстрее, чем это следует из простого роста частоты.

В конечном счете, самым большим преимуществом i80286 было то, что он имел способность работать с дополнительной памятью. Вместо 20-разрядной адресной шины i8088/i8086, i80286 имел 24-разрядную шину. Эти дополнительные 4 разряда давали возможность увеличить максимум адресуемой памяти до 16 М. i80286 позволил также использовать виртуальную память. Название говорит само за себя, что виртуальная память организуется не на каких-то отдельных физических чипах. Более того, информация хранится где-то во внешней памяти, но система обеспечивает к ней прямой доступ. i80286 снабжен специальными средствами, которые дают ему возможность отличать, к реальной или виртуальной памяти относится любой байт. Эти средства реализуются дополнительными схемами, включенными в микропроцессор. Они дают возможность работать с 1Г памяти, включающую в себя 16М физической памяти и 1008М виртуальной.

Теоретически i80286 должен был преодолеть барьер адресуемой памяти в
1М, который был установлен предыдущими моделями. Но в действительности эта возможность не была реализована.

Проблема была частично в традициях, а частично в совместимости. Ко времени появления i80286 IBM PC имела гарантированный успех. Для i8088, i8086 было разработано огромное программное обеспечение. Отказ от использования этих разработанных программ ставил под сомнение использование нового чипа. Для обеспечения совместимости с ранее разработанными чипами разработчики i80286 обеспечили его работу в двух режимах: в реальном и защищенном. Реальный режим был скопирован с режима работы i8086. Причем разработчики работали так добросовестно, что внесли в реальный режим и ограничение по использованию только 1М памяти.

Чтобы использовать улучшенные возможности Intel 80286, фирма разработала защищенный режим. Хотя отсутствовала программная совместимость с i8086, этот режим позволял использовать все 16М и даже 1Г виртуальной памяти в программах, работающих в защищенном режиме.

Точно так же как и i8086 в свое время, i80286 давал такие огромные ресурсы памяти, потребность в которых ещё не назрела к тому времени.
Поэтому этот режим не сразу был признан широким кругом пользователей.
Потребовалось почти три года, прошедших с момента презентации первой АТ и появлением операционной системы OS/2, работающей в этом режиме, и ознаменовавшей собой начало его широкого применения.

Имелись две причины медленной популяризации защищенного режима. Для программистов, работающих в DOS, существенным являлся вопрос перехода между реальным и защищенными режимами. Intel разработал переход между режимами только в одном направлении. Микропроцессор начинал работу только в реальном режиме, когда происходило тестирование всех 16М памяти, но для использования этого ресурса необходимо было перейти в защищенный режим.
Иначе пользователь мог довольствоваться только 1М памяти. Обратного перехода от защищенного режима к реальному не существует - требуется перезагрузка.

Кроме того, защищенный режим реализовывал только частично чаяния программистов. Вся огромная память i80286 была разделена на сегменты по
64К. Вместо того чтобы свободно использовать весь ресурс памяти, программистам приходилось мудрствовать, чтобы преодолеть эти барьеры между сегментами.

1.4 ПРОЦЕССОР i80386

i80386 был создан в 1985 году. i80386 был создан при полной ясности всех требований, предъявляемых к микропроцессорам и компьютерам. i80386 имел все положительные качества своих предшественников. Все микрокоды i80286 входили во множество микрокоманд i80386. Поэтому старое программное обеспечение могло использоваться с i80386. Но вместе с тем у i80386 были дополнительные возможности. Особенно привлекала возможность работать без ограничения связанного с сегментацией памяти. Размеры регистров и шины данных были увеличены до 32 бит. Информация передавалась и обрабатывалась в два раза быстрее, чем у 16-битного i80286.

С самого начала разработчики 80386 ставили перед собой задачу создать быстрый чип. При его создании использовалась CHMOS технология. Первые i80386 начали работать с наивысшей частотой, достигнутой для i80286. Затем появилась 20 Мгц модель. В 1985 году предел был, отодвинут до 25 Мгц. А вскоре и до 33 Мгц.

С увеличением шины данных до 32 бит, число адресных линий также было увеличено до 32. Само по себе это расширение позволило микропроцессору прямо обращаться к 4Гб физической памяти. Кроме того, он мог работать с 16 триллионами байт виртуальной памяти. Микропроцессор имел все необходимое для реализации последнего. Огромное преимущество давал способ организации памяти i80386. К ней можно было обращаться, как к одному большому полю, доступному для программ. То есть структуры данных и программы могли быть объемом в целую память. Разделение памяти на сегменты возможно, но не обязательно. Сегменты могут быть произвольны, а не ограничены по64К.

Кроме того, i80386 снабжен 16 байтами кэш-памяти. Это специально встроенное поле памяти используется для хранения нескольких команд микропроцессора. Независимо от производимых микропроцессором расчетов, специальная схема загружает в эту память код программного обеспечения, прежде чем в нем появится необходимость. Эта небольшая кэш-память помогает процессору работать более проворно без задержек, связанных с ожиданием загрузки очередной команды из оперативной памяти.
Для того чтобы обеспечить совместимость с предыдущими микропроцессорами и с огромной библиотекой DOS-программ i80386 был разработан таким образом, чтобы быть, как можно больше похожим на i8086 и i80286. Как и его предшественники, i80386 позволял работать в защищенном режиме с ограничением адресуемой памяти в 1М. В этом режиме он загружал и выполнял все программы, разработанные на процессорах предшествующих поколений.

С реального режима i80386 мог быть переведён в защищенный режим, где он функционировал подобно 80286, за исключением объёма памяти. В этом режиме в распоряжении программиста было больше памяти, и он мог более гибко манипулировать ею, потому что мог изменять размеры сегмента.

В противоположность i80286 - i80386 мог переходить из одного режима в другой без перезагрузки машины, а посредством команд программного обеспечения.

Новый режим, названный виртуальным режимом 8086 (Virtual mode), давал i80386 особенно большие свободы по использованию многозадачных ОС. В этом режиме этот процессор работал не как один 8086, а как неограниченное их количество в одно и тоже время. Этот режим позволял процессору разбивать память на множество виртуальных машин, каждая из которых работала так, как будто она была отдельным компьютером на 8086 чипе.

Сопроцессор i80287

Математический сопроцессор i80287 позволяет ему выполнять скоростные арифметические и логарифмические операции, а также тригонометрические функции с высокой точностью. Сопроцессор работает параллельно с микропроцессором, это сокращает время вычислений, позволяя сопроцессору выполнять математические операции, в то время как микропроцессор занимается выполнением других функций. Сопроцессор работает с семью типами числовых данных, которые делятся на следующие три класса:

- двоичные целые числа (3 типа);

- десятичные целые числа (1 тип);

- действительные числа (3 типа).

Основные характеристики i80386

Микропроцессор 80386 дает разработчику систем большое число новых и эффективных возможностей, включая производительность от 3 до
4 миллионов операций в секунду, полную 32-битную архитектуру, 4 гигабитное
(2 байт) физическое адресное пространство и внутреннее обеспечение работы со страничной виртуальной памятью.

Несмотря на введение в него последних достижений микропроцессорной техники, 80386 сохраняет совместимость по объектному коду с программным обеспечением, в большом количестве написанным для его предшественников, 8086 и 80286. Особый интерес представляет такое свойство 80386, как виртуальная машина, которое позволяет 80386 переключаться в выполнении программ, управляемых различными операционными системами, например, UNIX и MS-DOS. Это свойство позволяет производителям оригинальных систем непосредственно вводить прикладное программное обеспечение для 16-битных машин в системе на базе 32- битных микропроцессоров.

Объединяя в себе производительность супермини ЭВМ и низкую стоимость, и функциональную гибкость микропроцессора, 80386 может открыть новые рынки для микропроцессорных систем.

Применения, недопустимые прежде из-за невысокого быстродействия микропроцессоров или не экономности использования супермини ЭВМ, стали теперь практически осуществимы благодаря 80386. Такие новейшие применения, как машинное зрение, распознавание речи, интеллектуальные работы и экспертные системы, бывшие до недавнего времени в основном на стадии эксперимента, теперь могут быть предложены на рынке.

Для того чтобы удовлетворить требованиям будущих применений, мало иметь 32-битные регистры, команды и шины. Эти основные свойства являются лишь отправной точкой для 80386.

Совместимость с микропроцессорами 8086/80286

Два поколения процессоров семейства 86 предшествуют процессору 80386 -
80286 и 8086, с каждым из них 80386 совместим на уровне двоичных кодов.
Благодаря такой совместимости экономятся программные затраты, обеспечивается быстрый выход на рынок и доступ к обширной библиотеке программного обеспечения, написанного для машин на базе микропроцессоров семейства х86.

Микропроцессор 80386, конечно, может выполнять программы для 8086, он также может одновременно выполнять программы для 80286 и 80386. Однако наиболее важным свойством совместимости 80386 представляется свойство, называемое VIRTUAL 86 (виртуальный 86), устанавливающее защищенную структуру для 8086 внутри системы задач 80386. Дополняя свойство виртуального 8086 страничной организацией памяти, 80386 может закрепить за каждой задачей виртуального 8086 1 Мбайтное адресное пространство в любой области физического адресного пространства 80386. Более того, если операционная система 80386 обеспечивает работу с виртуальной памятью, то задачи виртуального 8086 могут переноситься с диска и обратно как любые другие задачи. Таким образом, свойство виртуального 8086 позволяет
80386 одновременно выполнять программы, написанные для трех поколений семейства 86.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.