Рефераты. Анализ современных цифровых радиоприемных устройств

Переход от аналогового сигнала к цифровому может производиться как по сигналу с выхода усилителя радио- или промежуточной частоты (по радиосигналу), так и по сигналу после аналогового детектора (по видеосигналу). При этом существенное значение имеет вид параметра, подвергаемого аналого-цифровому преобразованию.

Рассмотрим вначале радиосигнал, который можно представить в виде

,


где  и  - сигнальная и шумовая составляющие входного процесса;

 и  - его амплитуда и фаза;  - центральная частота спектра.


 

Спектр дискретного цифрового сигнала.

Рисунок 4.


При известной частоте  входной процесс столь же полно описывается с помощью комплексной огибающей


,


где  и  - квадратурные составляющие комплексной огибающей.

Аналого-цифровое преобразование представляет собой дискретизацию по времени и квантование по уровню, которым может подвергаться непосредственно входной процесс . Однако при этом спектр входного процесса должен целиком размещаться в одной из спектральных зон , где ,  - период дискретизации. В этом случае спектр дискретных отсчетов процесса  (где , ) в первой спектральной зоне  полностью соответствует исходному спектру, поэтому по дискретным отсчетам  можно без искажений восстановить непрерывный процесс . В противном случае спектр при дискретизации искажается.

Графики дискретизации и квантования сигнала.

а) отсчетная последовательность ;

б) исходный аналоговый сигнал;

в) дискретизированный сигнал;

г) цифровой сигнал;

д) ошибка квантования.

Рисунок 5.


Для подавления спектральных составляющих исходного процесса вне спектральной зоны  этот процесс перед дискретизацией пропускают через аналоговый полосовой фильтр с высоким коэффициентом прямоугольности. Нередко для снижения требуемого быстродействия АЦП входной процесс гетеродинируют в область частот первой спектральной зоны . В этом случае во избежание искажений спектра по зеркальному каналу полосовой фильтр с высоким коэффициентом прямоугольности применяют перед гетеродинированием.

Обработку полученных таким образом отсчетов называют обработкoй мгновенных значений или обработкой вещественного сигнала.

В другом способе цифровой обработки аналого-цифровому преобразованию подвергают квадратурные составляющие  и , которые можно получить умножением входного процесса  на два квадратурных гетеродинных колебания с частотой  и последующей фильтрацией нижнечастотных составляющих результатов перемножения с помощью ФНЧ.

В рассматриваемом способе отсутствует необходимость применения полосового фильтра с высоким коэффициентом прямоугольности. Однако спектр квадратурных составляющих должен целиком располагаться в первой спектральной зоне. Для обеспечения этого условия может потребоваться ФНЧ с высоким коэффициентом прямоугольности. Отсчеты квадратурных составляющих можно также получить путем дискретизации входного процесса  в моменты времени  и , сдвинутые относительно друг друга на четверть периода колебания с частотой .

Обработку квадратурных составляющих называют обработкой комплексного сигнала. Обычно для такой обработки требуется более сложная цифровая часть, но более простая аналоговая (полосовой фильтр с высоким коэффициентом прямоугольности сложнее ФНЧ). При эгом иногда несколько улучшаются характеристики обработки.

Обработка квадратурных составляющих равноценна (при неучете технической реализации) обработке амплитуды  и фазы  входного процесса, т. е. Амплитудно-фазовой обработке. В ряде случаев отказываются от использования информации, заключенной в амплитуде , и обрабатывают лишь отсчеты фазы  (фазовая обработка). При этом отсчеты фазы часто получают путем измерения временного промежутка между нулем (под нулем некоторого колебания понимается момент прохождения этим колебанием нулевого уровня с производной определенного знака (например, положительной). опорного колебания и первым следующим за ним нулем входного процесса). Таким образом удается построить наиболее простые цифровые устройства для решения некоторых задач. Однако подобный метод обработки дает удовлетворительные результаты лишь при весьма узкополосном входном процессе и не слишком малом отношении сигнал-шум.

Перейдем теперь к рассмотрению обработки видеосигнала. Здесь наиболее распространенной является обработка его мгновенных значений. Однако в некоторых случаях (например, в радионавигации и в технике передачи дискретных сообщений) применяют также фазовую обработку. Такой способ применим при относительно высоком отношении сигнал-шум на входе АЦП.

Существенное значение имеет выбор числа уровней квантования в АЦП. При обработке аддитивной смеси сигнала и широкополосного гауссовского шума, особенно если мощность шума на входе АЦП превышает мощность сигнала, широко применяют бинарное квантование. Оно позволяет резко упростить цифровую обработку, в частности, отказаться от АРУ и заменить АЦП более простым устройством, фиксирующим в моменты дискретизации знак отсчета квантуемого напряжения. Однако при негауссовских помехах (например, гармонических) характеристики цифровой обработки из-за бинарного квантования могут сильно ухудшиться, в этом случае переходят к многоуровневому квантованию.

Многоуровневое квантование применяется также тогда, когда мощность сигнала значительно больше мощности шума, причем недопустимо заметное ухудшение отношения сигнал-шум за счет квантования.

Отметим, что в последние годы широкое распространение получили линии с псевдошумовыми (ПШ) сигналами. Зачастую в РПУ осуществляют аналоговую свертку ПШ сигнала, т. е. перемножение входной смеси ПШ радиосигнала с помехой на опорный ПШ видеосигнал и узкополосную (по сравнению с шириной спектра ПШ сигнала) фильтрацию результата перемножения. При свертке помехи с любым распределением нормализуются, что позволяет использовать бинарное квантование свернутого сигнала при любых распределениях исходной помехи.

2. Элементы цифровых РПУ


Основными элементами цифровых радиоприемных устройств можно считать, учитывая изложенное выше, такие элементы как цифровые фильтры, цифровые детекторы, устройства цифровой индикации и устройства контроля и управления ЦРПУ. Рассмотрим их более подробно.

2.1 Цифровые фильтры


В общем случае в линейном стационарном цифровом фильтре k-й выходной отсчет y(k) (в момент времени t=kΔ) линейно зависит от k-го входного отсчета x(k) и некоторого количества предшествующих отсчетов x() (<k), а также от некоторого количества выходных отсчетов y() (<k):


Числа L и M в разностном уравнении (1) называют соответственно относительной памятью ЦФ по входу и выходу. ЦФ с памятью по входу называются рекурсивным, а без такой памяти нерекурсивными.

Алгоритмы работы различных ЦФ отличаются параметрами Q и M и набором коэффициентов {aℓ} и {bi}. Рассмотрим сначала реализацию нерекурсивных ЦФ, когда все bi=0 (т.е. М=0).

В этом случае разностное уравнение (1) принимает вид:



Структурная схема ЦФ, реализующая алгоритм (2) приведена на следующем рисунке:





 


Рисунок 6.

Структурная схема построения нерекурсивного (трансверсального) ЦФ


Основными элементами ЦФ являются блоки задержки отсчетных значений на один тактовый интервал (условно обозначены символом z-1), а также масштабные блоки aq (усилители). Сигналы с последних собираются в сумматор, образуя входной отсчет. Посредством разностного уравнения (2) можно построить лишь ЦФ с финитной (конечной) импульсной характеристикой {g(0), g(1)…g(Q)}.Если на вход схемы трансверсального типа подать единичный импульс (1,0,0,0,…), то по определению отклик ЦФ есть его импульсная характеристика g(t). Это возможно лишь при условии, что в трансверсальном ЦФ отсчеты импульсной характеристики g(q) совпадают с коэффициентами aℓ, ℓ=0,1,2,…Q.


Взяв Z-преобразование от левой и правой частей (2) получаем:

Тогда системная функция трансверсального фильтра будет иметь вид:



Равенство (3) определяет дробно-рациональную функцию от Z. Она имеет L-кратный полюс при Z=0 и L нулей, определяемых корнями полинома числителя формулы (3). Последние зависят от отсчетов импульсной характеристики ЦФ g(ℓ)=aℓ. Частотная характеристика трансверсального цифрового фильтр согласно (3) и (1) имеет вид:

Рассмотрим теперь работу ЦФ, работающего по общему алгоритму (1).

x(k)




a0                     a1                                                                      aq



                                                                                                            y(k)



              bM                                                                           b1



         



Структурная схема построения рекурсивного ЦФ

Рисунок 7.


Взяв Z-преобразование от левой и правой частей (1) получим:



Отсюда следует выражение для системной функции цифрового рекурсивного фильтра:


В реализуемых цифровых фильтрах обычно M>Q. При таких условиях дробно-рациональная функция (5) имеет на Z-плоскости: L нулей, определяемых корнями Zoi уравнения:

M-L-кратный ноль в точке Z=0;



М полюсов, определяемых корнями Zni уравнения

Если коэффициенты bℓ (ℓ=1,M) вещественны, то корни уравнения (6) (т.е полюса H(z)) лежат либо на вещественной оси, либо образуют комплексно сопряженные пары.

Системной функции (5) соответствует частотная характеристика ЦФ:



где Ro,i=ej-zo,i,Rп,i= ej- zo,i

АЧХ фильтра (в децибелах) определяется формулой:


За счет наличия обратной связи рекурсивные ЦФ характеризуются нефинитной (длящейся неограниченно) импульсной характеристикой (откликом на единичный импульс (1,0,0,0,…)).

Система с обратной связью нуждается в исследовании на устойчивость. ЦФ устойчив, если │yn│при n→∞ не превышает некоторого положительного числа А, независимо от выбора начальных условий в схеме. Чтобы исследовать устойчивость схемы, надо исследовать поведение свободных колебаний, т.е. уравнение (1) при отсутствии внешнего воздействия:



Известно, что отдельное свободное колебание в линейной стационарной системе определяется выражением.

При t=kΔ, имеем                    . Обозначив  решение уравнения (58) можно искать в виде:

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.