Рефераты. Анализ и синтез одноконтурной системы автоматического регулирования

К основным качественным показателям систем, которые определяются после нахождения так называемых h-функций, относятся следующие:

1.     Время переходного процесса tр, по истечении которого, управляемая величина будет оставаться близкой к установившемуся значению;

2.     Установившееся значение регулируемой величины h¥=lim h(t)=hy;

3.     Максимальное перерегулирование y=(hmax-hy)/hy (здесь hmax-значение первого максимума);

4.     Частота колебаний w=2p/Т (здесь Т-период колебаний);

5.     Число колебаний переходного процесса n;

6.     Время достижения первого максимума tmax;

7.     Декремент затухания s=(hmax-hy)/ (hmax-hy);

Важным показателем качества САУ является их надежность. Качественные показатели определяются путем решения дифференциальных уравнений, которыми описываются уже известные структуры САУ.

Синтез САУ заключается в нахождении структур и параметров ее, которые бы отвечали заданным показателям качества. Синтез является более трудной задачей по сравнению с анализом. Основными методами используемыми при синтезе САУ является аналитический, графоаналитический и машинный (с помощью вычислительных машин).


2.1.1. Оценка возможности статического регулирования.

При выборе регулятора необходимо знать численные динамические сведения об объекте регулирования, т.е. К0; Тоб;t0, которые определим по разгонной характеристике.


Рис 4. Кривая разгона САР температуры лабораторного стенда.

Тип регулятора ориентировочно выбирают по отношению t/Tоб;

Наименование регулятора по роду действия

Критерий

Импульсный

t/Tоб>0,5-1,0

Релейный

0<t/Tоб<0,2

Непрерывный

t/Tоб>0

Критерии выбора регуляторов по роду действия.

Для исследования и расчета структурную схему АСР путем эквивалентных преобразований следует привести к простейшему стандартному виду объект-регулятор. Это необходимо, во-первых, для того чтобы определить ее передаточные функции, а следовательно, и математические зависимости, которыми определяются переходные процессы в системе, и во-вторых, как правило, все инженерные методы расчета и определения параметров настройки регуляторов применено для такой стандартной структуры.

Так исходная структурная схема САР температуры по типовой функциональной схеме (см. чертежи) может быть представлена в виде изображенном на рисунке.

Где WP(р), WИМ(р), WPO(р), WOP(р), WИУ(р), - соответственно передаточные функции регулятора, исполнительного механизма, регулирующего органа, объекта регулирования и измерительного устройство.

На структурной схеме все воздействия (сигнала) следует указывать в преобразованном по Лапласу виде.

Рис 5. Преобразованная структурная схема САР (t).

Все звенья, определяющие динамические свойства узлов сопряжения (соединения, взаимосвязи) объекта с регулятором (например регулирующие органы, линии связи, измерительные устройства, датчики т.п.), целесообразно, как правило, относить к объекту регулирования.

Если в системе непосредственно регулятор и исполнительный механизм реализуют закон регулирования, то передаточная функция регулятора

WP(р)=Wу(р) WИМ(р)

Статическое регулирование характеризуется наличием П – регулятора, тогда

WP(р)=Крег

При оптимизации значений, по экспериментальным данным целесообразно К – коэффициент регулятора принимать К=10

WP(р)=10

Передаточная функция объекта регулирования с учетом отнесенных к собственно объекту звеньев, имеет вид:

Wоб(р)= WPO(р)WOP(р)WИУ(р)

В общем случае любая одномерная АСР с главной обратной связью путем постепенного укрепления звеньев может быть приведена к простейшему виду, передаточная функция разомкнутой системы, которой

W(p)=WP(p)*WОБ(p)

Кривая разгона САР температуры показывает, что объект инерционный, статический и имеет запаздывание, так как запаздывание незначительно. В дальнейшем исследовании им можно пренебречь. Тогда передаточная функция объекта будет иметь следующий вид:

Wоб(р)=Коб/(Тобр+1)

Передаточная функция разомкнутой системы

W(p)=WP(p)*WОБ(p)

 - при статическом регулировании.

Рис 6. ЛАЧХ и ЛФЧХ для объекта.

Рис 7. АФХ для объекта.

Найдем передаточную функцию замкнутой системы:

Т.к. величина постоянных времени определяется конструктивными особенностями элементов системы, то настройка системы регулирования осуществляется только изменением ее коэффициента К путем воздействия на коэффициент передачи Кр регулятора.

Для определения устойчивости системы строим амплитудно-частотную, фазо-частотную характеристики в логарифмическом масштабе и по замкнутой системе строим годограф.

Рис 8. ЛАХЧ и ЛФЧХ при статическом регулировании.

Рис 9. Амплитудно-фазовая характеристика замкнутой системы.

По графикам видим, что при коэффициенте регулятора К­р=10 запас устойчивости выполняется, т.к. на частоте среза wср фаза меньше 180°, что характеризует устойчивость системы при статическом регулировании, значит возможно использование П-регулятора для САР температуры.

2.1.2. Оценка возможности астатического регулирования.

Одним из признаков астатического звена (или системы в целом) является наличие комплексного переменного Р в качестве множителя в знаменателе передаточной функции, т.е. наличие интегрирующей составляющей.

Рассмотрим возможность ПИ-закона регулирования САР температуры. Для этого построим структурную схему, в которую включим ПИ-регулятор.

Рис 10. Структурная схема САР температуры.

Передаточная функция ПИ-регулятора имеет вид

WP(р)=К+1/Тр; (К=20; Ти=25 сек.)

Найдем передаточную функцию разомкнутой системы

Wраз(р)=Wр(р)Wоб(р)

Найдем передаточную функцию замкнутой системы

По передаточной функции разомкнутой системы строим ЛАЧХ и ЛФЧХ, а по функции замкнутой системы строим АФХ.

Рис 11. Амплитудно-фазовая характеристика замкнутой системы.

Рис 12. ЛАЧХ и ЛФЧХ при астатическом регулировании.

Частотные характеристики показывают, что система имеет запас устойчивости, как по амплитуде, так и по фазе, т.к. на частоте среза wср фаза < 180° значит возможно использовать ПИ регулятор для САР температуры.

2.1.3. Исследование качества одноконтурной САР.

К автоматическим системам регулирования предъявляются требования не только в отношении ее устойчивости. Для работоспособности системы не менее необходимо, что бы процесс автоматического регулирования при определенных качественных показателей.

Требования к качеству процесса регулирования в каждом случае могут быть самыми разнообразными, однако из всех качественных показателей можно выделить несколько наиболее существенных, которые с достаточной полнотой определяют качество почти всех АСР.

Качество процесса регулирования системы, как правило, оценивают по ее переходной функции.

Основными показателями качества является: - время регулирования tр – называется время, в течении которого, начиная с момента приложения воздействия на систему отклонения регулируемой величины Dh(t) от ее установившегося значения h0=h(¥) будут меньше на пред заданной величины Е. Обычно принимают, что по истечении времени регулирования отклонении регулируемой величины от установившегося значения должно быть не более Е=5%. Таким образом, время регулирования определяет длительность (быстродействие) переходного процесса.

-   перерегулированием s называется максимальное отклонение Dhmax регулируемой величины от установившегося значения, выраженное в процентах от h0=h(¥).

Абсолютная величина Dhmax определяется из кривой переходного процесса:

Dhmax=hmax- h(¥)

Соответственно перерегулирование будет равно:

-         Колебательность системы характеризуется числом колебаний регулируемой величины за время регулирования tр. Если за это время переходный процесс в системе совершает число колебаний меньше заданного, то считается, что система имеет требуемые качеством регулирования в части ее колебательности;

-         Установившаяся ошибка Е. Установившееся значение регулируемой величины h0 в окончании переходного процесса зависит от астатизма n системы. В статических системах (n=0) – установившаяся ошибка при постоянной величине входного воздействия не равна 0 и следовательно, установившееся значение регулируемой величины h0 будет отличаться от ее заданного значения на величину установившейся ошибки.

По каналу возмущающего воздействия величина ошибки определяется выражением

где x0-постоянное задающее воздействие; К – коэффициент передачи системы.

По каналу возмущающего воздействия величина ошибки согласно выражения

где f0 – постоянное возмущающее воздействие; Коб – коэффициент передачи объекта регулирования; Кр – коэффициент передачи регулятора.

Сравнивая переходные функции статического и астатического регулирования, выбираем оптимальный регулятор для САР температуры.

Рис 13. Переходная функция САР с П-регулятором

Рис 14. Переходная функция САР с ПИ-регулятором

По графикам видно, что время регулирования с ПИ-регулятором меньше, чем с П-регулятором; значит для САР температуры целесообразно применить импульсный регулятор выполняющий ПИ-закон регулирования.

Для расчетов использовали на компьютере программу «Classic».

3. Разработка схемы контура регулирования заданным параметром.

Схемы выполнены по ГОСТ 2.710-81.

Рис 15. Контур трехпозиционного регулирования.

Подача питания на лабораторный стенд производится автоматом питания SF1 схема №003Э3. При этом включается нагревательный элемент объекта управления через размыкающий контакт КМ 1.1. реле КМ 1, и вторичный показывающий самопишущий прибор КСУ 4. В положении 90° универсального переключателя SA1 электродвигатель вентилятора. В положении -45°, переключателя SA1, включается в позиционное регулирование, в положении +45° - трехпозиционное регулирование.

При 2-х позиционном регулировании через размыкающий контакт датчика ТУДЭ1 включена обмотка реле КМ1. При превышении установленной температуры на датчике, его контакт размыкается и размыкает контакт КМ1.1, выключая при этом нагревательный элемент, о чем оповещает сигнальная лампа HL4.

Трехпозиционное регулирование показано на схеме №004Э2. В автоматическом режиме электрический сигнал от термопреобразователе ТСМУ последовательно поступает сначала на вход прибора КСУ4(2) зажим 12 и через зажим 11 поступает на вход 25 регулирующего блока РБИ 1-П.

На вход РБИ 1-П зажим 21 от задатчика РЗД подается также токовый сигнал, пропорциональный заданному значению температуры.

На выходе регулятора, зажимами 7 и 9 выдается сигнал «Меньше» и «Больше» соответственно, относительно средней точки зажима 10. Сигнал проходит через БРУ и размыкающие контакты SQ1 и SQ2 исполнительного механизма ИМ, которые управляют пускателем ПБР зажимы 7 и 9. ПБР включает ИМ контактами 1, 2 и 3.

В ручном режиме управления ИМ проходит кнопками БРУ «Больше» или «Меньше».

Заключение

Для рассчитываемой системы объекта произведены следующие расчеты:

Разработка функциональной схемы автоматического регулирования. Получена передаточная функция и структурное преобразование схемы объекта управления. Построены частотные характеристики объекта управления. Произведена оценка возможностей статического объекта регулирования (П-регулятор), а также оценка возможности астатического объекта регулирования (ПИ-регулятор). Произведено исследование качества одноконтурной системы автоматического регулирования.

Выполнено   построение   желаемых   частотных   характеристик скорректированной системы. Выполнен выбор и расчёт корректирующего устройства. Произведена оценка качества скорректированной системы.

Выполнена разработка схемы контура регулирования заданным параметром.

На основании проведенных расчетов можно сказать, что подбор корректирующего устройства произведен, верно, и отвечает показателям качества системы с произведенной коррекцией.

Список используемой литературы.

1.     И.Ю. Топчев «Атлас для проектирования CAP»

2.     B.C. Чистяков «Краткий справочник по теплотехническим измерениям»

3.     Н.Н.Иващенко «Автоматическое регулирование»

4.     В.В. Черенков «Промышленные приборы и средства автоматизации»


Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.