Рефераты. Анализ и оптимизация цифровой системы связи

M = 2k, k - четное число.

Вероятность ошибки при ОFDМ:



где η - число уровней амплитуды;

α = η+1;

M = 2k, k - четное число.

Выбор метода модуляции осуществляется в соответствии с критерием минимума вероятности ошибки.


1.4 Выбор вида помехоустойчивого кода и определение длины кодовой комбинации


Помехоустойчивое, или избыточное, кодирование применяется для обнаружения и(или) исправления ошибок, возникающих при передаче по дискретному каналу. Отличительное свойство помехоустойчивого кодирования состоит в том, что избыточность источника, образованного выходом кодера, больше, чем избыточность источника на входе кодера. Помехоустойчивое кодирование используется в различных системах связи, при хранении и передаче данных в сетях ЭВМ, в бытовой и профессиональной аудио- и видеотехнике, основанной на цифровой записи.

Если экономное кодирование сокращает избыточность источника сообщений, то помехоустойчивое кодирование, напротив, состоит в целенаправленном введении избыточности для того, чтобы появилась возможность обнаруживать и(или) исправлять ошибки, возникающие при передаче по каналу связи.

Чтобы посчитать вероятность ошибки кодовой комбинации найдем параметры кода. К ним относятся:

n=m+k - длина кодовой комбинации;

m - число информационных символов(разрядов);

k - число проверочных символов (разрядов);

Особую важность для характеристики корректирующих свойств кода имеет минимальное кодовое расстояние dmin, определяемое при попарном сравнении всех кодовых комбинаций, которое называют расстоянием Хемминга.

В безизбыточном коде все комбинации являются разрешёнными, и, следовательно, его минимальное кодовое расстояние равно единице - dmin = 1. Поэтому достаточно исказиться одному символу, чтобы вместо переданной комбинации была принята другая разрешённая комбинация. Чтобы код обладал корректирующими свойствами, необходимо ввести в него некоторую избыточность, которая обеспечивала бы минимальное расстояние между любыми двумя разрешёнными комбинациями не менее двух - dmin > 2.

Минимальное кодовое расстояние является важнейшей характеристикой помехоустойчивых кодов, указывающей на гарантируемое число обнаруживаемых или исправляемых заданным кодом ошибок.

При применении двоичных кодов учитывают только дискретные искажения, при которых единица переходит в нуль (1 → 0) или нуль переходит в единицу (0 → 1). Переход 1 → 0 или 0 → 1 только в одном элементе кодовой комбинации называют единичной ошибкой (единичным искажением). В общем случае под кратностью ошибки подразумевают число позиций кодовой комбинации, на которых под действием помехи одни символы оказались заменёнными на другие. Возможны двукратные (t = 2) и многократные (t > 2) искажения элементов в кодовой комбинации в пределах 0 < t < n.

Минимальное кодовое расстояние является основным параметром, характеризующим корректирующие способности данного кода. Если код используется только для обнаружения ошибок кратностью t0, то необходимо и достаточно, чтобы минимальное кодовое расстояние было равно


dmin > t0 + 1.(1.29)


В этом случае никакая комбинация из t0 ошибок не может перевести одну разрешённую кодовую комбинацию в другую разрешённую. Таким образом, условие обнаружения всех ошибок кратностью t0 можно записать в виде:


t0 ≤ dmin - 1.(1.30)


Чтобы можно было исправить все ошибки кратностью tи и менее, необходимо иметь минимальное расстояние, удовлетворяющее условию:


.(1.31)


В этом случае любая кодовая комбинация с числом ошибок tи отличается от каждой разрешённой комбинации не менее чем в tи + 1 позициях. Если условие (1.31) не выполнено, возможен случай, когда ошибки кратности t исказят переданную комбинацию так, что она станет ближе к одной из разрешённых комбинаций, чем к переданной или даже перейдёт в другую разрешённую комбинацию. В соответствии с этим, условие исправления всех ошибок кратностью не более tи можно записать в виде:


tи ≤ (dmin - 1) / 2 .(1.32)


Из (1.29) и (1.31) следует, что если код исправляет все ошибки кратностью tи, то число ошибок, которые он может обнаружить, равно t0 = 2∙tи. Следует отметить, что соотношения (1.29) и (1.31) устанавливают лишь гарантированное минимальное число обнаруживаемых или исправляемых ошибок при заданном dmin и не ограничивают возможность обнаружения ошибок большей кратности. Например, простейший код с проверкой на чётность с dmin = 2 позволяет обнаруживать не только одиночные ошибки, но и любое нечётное число ошибок в пределах t0 < n.

Длина кодовой комбинации n должна быть выбрана таким образом, чтобы обеспечить наибольшую пропускную способность канала связи. При использовании корректирующего кода кодовая комбинация содержит n разрядов, из которых m разрядов являются информационными, а k разрядов - проверочными.

Избыточностью корректирующего кода называют величину


,(1.33)


откуда следует


.(1.34)


Эта величина показывает, какую часть общего числа символов кодовой комбинации составляют информационные символы. В теории кодирования величину Bm называют относительной скоростью кода. Если производительность источника информации равна Ht символов в секунду, то скорость передачи после кодирования этой информации окажется равной


,(1.35)


поскольку в закодированной последовательности из каждых n символов только m символов являются информационными.

Если в системе связи используются двоичные сигналы (сигналы типа "1" и "0") и каждый единичный элемент несет не более одного бита информации, то между скоростью передачи информации и скоростью модуляции существует соотношение


,(1.36)


где V - скорость передачи информации, бит/с; B - скорость модуляции, Бод.

Очевидно, что чем меньше k, тем больше отношение m/n приближается к 1, тем меньше отличается V от B, т.е. тем выше пропускная способность системы связи.

Извеcтно также, что для циклических кодов с минимальным кодовым расстоянием dmin = 3 справедливо соотношение


k ³ log2(n+1).(1.37)


Видно, что чем больше n , тем ближе отношение m/n к 1. Так, например, при n = 7, k = 3, m = 4, m/n=0,571; при n = 255, k = 8, m = 247, m/n = 0,964; при n = 1023, k = 10, m = 1013, m/n = 0,990.

Приведенное утверждение справедливо и для больших dmin, хотя точных соотношений для связей между m и n нет. Существуют только верхние и нижние оценки, которые устанавливают связь между максимально возможным минимальным расстоянием корректирующего кода и его избыточностью.

Так, граница Плоткина даёт верхнюю границу кодового расстояния dmin при заданном числе разрядов n в кодовой комбинации и числе информационных разрядов m, и для двоичных кодов:


(1.38)


или


 при .(1.39)


Верхняя граница Хемминга устанавливает максимально возможное число разрешённых кодовых комбинаций (2m) любого помехоустойчивого кода при заданных значениях n и dmin:


,(1.40)


где - число сочетаний из n элементов по i элементам.

Отсюда можно получить выражение для оценки числа проверочных символов:


.(1.41)


Для значений (dmin/n) ≤ 0,3 разница между границей Хемминга и границей Плоткина сравнительно невелика.

Граница Варшамова-Гильберта для больших значений n определяет нижнюю границу для числа проверочных разрядов, необходимого для обеспечения заданного кодового расстояния:


.(1.42)


Все приведенные выше оценки дают представление о верхней границе числа dmin при фиксированных значениях n и m или оценку снизу числа проверочных символов k при заданных m и dmin.

Из изложенного можно сделать вывод, что с точки зрения внесения постоянной избыточности в кодовую комбинацию выгодно выбирать длинные кодовые комбинации, так как с увеличением n относительная пропускная способность


R = V/B = m/n(1.43)


увеличивается, стремясь к пределу, равному 1.

В реальных каналах связи действуют помехи, приводящие к появлению ошибок в кодовых комбинациях. При обнаружении ошибки декодирующим устройством в системах с РОС производится переспрос группы кодовых комбинаций. Во время переспроса полезная информация не передается, поэтому скорость передачи информации уменьшается.

Можно показать, что в этом случае

,(1.44)


где Poo - вероятность обнаружения ошибки декодером (вероятность переспроса):


;(1.45)


Рпп - вероятность правильного приема (безошибочного приема) кодовой комбинации ;

М - емкость накопителя передатчика в числе кодовых комбинаций


,(1.46)


где tp - время распространения сигнала по каналу связи, с;

tк - время передачи кодовой комбинации из n разрядов, с.

Знак < > означает, что при расчете М следует брать большее ближайшее целое значение.

Время распространения сигнала по каналу связи и время передачи кодовой комбинации рассчитываются в соответствии с выражениями


tp = (L/с);

tк = (n/B),


где L - расстояние между оконечными станциями, км;

с - скорость распространения сигнала по каналу связи, км / с (с = 3х105);

В - скорость модуляции, Бод.

При наличии ошибок в канале связи величина R является функцией Р0, n, k, В, L, с. Следовательно, существует оптимальное n (при заданных Р0, В, L, с), при котором относительная пропускная способность будет максимальной.

Для вычисления оптимальных величин n, k, m удобнее всего воспользоваться программным пакетом математического моделирования, таким как MathLab или MathCAD, построив в нем график зависимости R(n). Оптимальное значение будет в том случае, когда R(n) - максимально. При определении величин n, k, m необходимо также обеспечить выполнение условия:


,(1.47)


где - эквивалентная вероятность ошибки приема единичного разряда при применении помехоустойчивого кодирования с РОС.

Величину  можно определить воспользовавшись соотношением, что при передаче без применения помехоустойчивого кодирования вероятность ошибочной регистрации кодовой комбинации Р0кк длины n равна


.(1.48)


В тоже время при применении помехоустойчивого кодирования


,(1.49)


где  - вероятность необнаруженных ошибок

;(1.50)


 - вероятность обнаруженных ошибок


.(1.51)


Дополнительно к выполнению условия (1.47) необходимо обеспечить


V ³ Ht. (1.52)


Из казанного выше следует, что процесс поиска значений В, n, m, k является итерационным и его удобнее всего оформить в виде таблицы, образец которой приведен в табл. 1.2

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.