Рефераты. Расчет симметричных автоколебаний нелинейной САР

фгр=0.00115

Расчёт и построение кривых WЛЧ(j) и ZНЭ(A) осуществляем с помощью ЭВМ. Построим с помощью ППП Mathcad 2001 кривые WЛЧ (jщ) и ZНЭ (А) при различных значениях варьируемого параметра ф.

При ф< фгр графики Wлч(jw) и Zнэ(A) пересекаться не будут. Решение уравнения (2) не существует, и автоколебания в нелинейной системе невозможны.

При ф= фгр=0.00115 Wлч(jw) и Zнэ(A) касаются друг друга в точке с координатой -0.05 на вещественной оси, колебания находятся на грани своего возникновения и исчезновения.

При ф=0.008

При ф=0.03

При ф=0.08

При ф=0.135

При ф=0.3

При 0.444>ф>фгр рассматриваемые функции Wлч(jw) и Zнэ(A) имеют одну точку пересечения.

Анализ устойчивости этих решений в точках пересечения кривых WЛЧ(j) и ZНЭ(A) осуществили по взаимному расположению этих кривых. Периодический режим устойчив, если двигаясь по характеристике НЭ в сторону возрастания амплитуды А, переходим из неустойчивой области в устойчивую область D-разбиения, и наоборот. Проанализировав приведенные выше графики делаем вывод, что при А?b и 0.444>ф>фгр периодический режим устойчив, а при a?А?b неустойчив.

Из полученных графиков найдем значения амплитуды А и частоты щ при различных значения параметра ф.

Ниже представлен расчет при А?b и ф = 0.00115:

Теперь представим расчеты при a ?А?b и ф = 0.3

Остальные значения, приведенные в таблицах 2 и 3, получены по аналогии:

Таблица 2. Таблица 3.

ф

щ

А?b

0.00025

-//-

-//-

0.00115

13.904

1.166

0.008

12.696

1.653

0.03

10.182

2.637

0.08

7.333

4.569

0.135

5.722

6.47

0.3

3.525

11.768

ф

щ

a ?А?b

0.00025

-//-

-//-

0.00115

13.904

1.11

0.008

12.696

0.83

0.03

10.182

0.579

0.08

7.333

0.451

0.135

5.722

0.408

0.3

3.525

0.364

2.1. Применение численных методов решения системы двух алгебраических уравнений.

Характеристика НЭ, входящего в заданную нелинейную систему, однозначна (q(A)), поэтому основное уравнение (1) метода гармонической линеаризации распадается на два уравнения:

,

; (6)

Найдем решение системы уравнений (6) при условии, что А?b с помощью пакета прикладных программ MathCAD 2001.

Теперь найдем решение системы уравнений (6) при условии, что a ?А?b


Сведем полученные данные в таблицу 4.

Таблица 4.

ф

щ

А?b

a ?А?b

0.00025

-//-

-//-

-//-

0.00115

13.904

1.165

1.12

0.008

12.696

1.64

0.836

0.03

10.182

2.634

0.579

0.08

7.333

4.56

0.451

0.135

5.722

6.485

0.407

0.3

3.525

11.77

0.364

Сравнив таблицу 4 с таблицами 2 и 3, можно сделать вывод, что погрешность между расчетами графо-аналитическим методом гармонического баланса и расчетами численным методом решения системы двух алгебраических уравнений не велика.

Построим зависимости параметров автоколебаний от варьируемого параметра.

Зависимость амплитуды и частоты от времени запаздывания при условии А?b:

Зависимость амплитуды и частоты от времени запаздывания при условии a ?А?b:

Проанализировав зависимость частоты и амплитуды от параметра ф при А?b не трудно заметить, что при увеличении транспортного запаздывания увеличивается амплитуда автоколебаний и вследствие чего уменьшается их частота.

При условии a ?А?b периодический режим неустойчив рассматривать зависимость амплитуды и частоты от параметра ф не имеет смысла.

3. Цифровое моделирование системы и получение временной диаграммы ее переходного процесса на ЭВМ. Построение проекции фазовой траектории.

Моделирование осуществляем с помощью пакета программы MathLab 6.5.

рис.4 Моделирование в программе Simulink

После задания параметров всех элементов схемы строим фазовые портреты и переходные характеристики.

Фазовые траектории и переходные характеристики при ф>фгр :

ф=0.03

рис.5 фазовая траектория при ф=0.03

Фазовая траектория имеет один устойчивый предельный цикл, что соответствует устойчивому режиму автоколебаний

рис. 6 переходная характеристика при ф=0.03

Из графика рассчитаем значение А=2.6; =2р/Т =2·3.14/0.65=9.66

При переходной процесс имеет колебательный характер, при этом устанавливаются автоколебания

ф=0.3

рис.7 фазовая траектория при ф=0.3

Фазовая траектория имеет один устойчивый предельный цикл, что соответствует устойчивому режиму автоколебаний

рис. 8 переходная характеристика при ф=0.3

Из графика рассчитаем значение А=12; =2р/Т =2·3.14/1.8=3.48

При переходной процесс имеет колебательный характер, при этом устанавливаются автоколебания.

Сравним расчетные значения и значения полученные в результате моделирования:

ф

А расчетнае

А модел.

расчетнае

модел.

0.003

2.637

2.6

10.182

9.66

0.3

11.768

12

3.525

3.48

Фазовая траектория при <

ф=0.00025

рис.9 фазовая траектория при ф=0.00025

Проекция фазовой траектории на фазовую плоскость Х1 имеет сходящийся характер, что говорит об отсутствии автоколебаний

рис. 10 переходная характеристика при ф=0.00025

При переходной процесс имеет колебательный затухающий характер.

4. Выводы по работе

В работе проведено исследование следящей системы отработки угловых перемещений с местной обратной связью по скорости двигателя. Определен диапазон варьирования параметра 0?ф?0.444 и рассчитано значение фгр=0.00115 (при ф = фгр колебания в системе находятся на грани своего возникновения и исчезновения).

Показано, что при значении 0.444>ф>фгр и условии А?b в системе наблюдается устойчивый периодический режим с определённой амплитудой и частотой. При условии при a ?А?b периодический режим неустойчив.

Параметры автоколебаний были найдены вначале приближённым графоаналитическим методом, исходя из точек пересечения годографов WЛЧ(j) и ZНЭ(A). В следующем пункте эти параметры были уточнены с помощью численного расчёта. Расхождение в числовых выражениях оказалось небольшим (см. таблицы 2,3 и 4).

При ф<фгр наблюдается сходящийся процесс, любое воздействие на систему приводит к затухающим колебаниям, т.е. автоколебания не возможны при любых начальных условиях.

При математическом моделировании системы на ЭВМ были получены переходные характеристики и фазовые траектории системы при разных значениях варьируемого параметра. Эти характеристики дают наглядное представление о качестве регулирования. При этом были также найдены приближенные значения амплитуды и частоты при ф=0.03 и ф=0.3.

Небольшие расхождения между искомыми значениями при использовании графоаналитического метода и цифрового моделирования это объясняется возникновением погрешности в расчетах (погрешность метода, погрешность ЭВМ) а также погрешность построения. При аналитическом расчете использовались итерационные методы решения, которые не гарантируют точного результата за конечное число операций (итераций), т.е. здесь особенно выражена погрешность метода, также есть и погрешность ЭВМ.

Изучив зависимость частоты и амплитуды от параметра ф при А?b не трудно заметить, что при увеличении транспортного запаздывания (в данной работе мы рассматривали 0.444>ф>фгр) увеличивается амплитуда автоколебаний и вследствие чего уменьшается их частота.

Список литературы.

Методические указания к курсовой работе по дисциплине «Теория автоматического управления» - Савин М.М., Пятина О.Н., Елсуков В.С. - НГТУ Новочеркасск 1994 г.

Теория автоматического управления: Учеб. для ВУЗов: в 2 ч. /Под ред.

А.В. Нетушила. М.:Высш.шк., 1983. Ч.2.432 с.

Теория автоматического управления» - Савин М.М., Елсуков В.С., Пятина О.Н.,. - Новочеркасск 2005 г.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.