Рефераты. Радиоактивные изотопы и соединения

С химической стабильностью соединений трития связана еще одна проблема. Устойчивость химической связи водорода (любого изотопа водорода) с другими атомами в молекуле зависит от природы этой связи. Соответственно, возможность обмена водорода в молекуле меченого соединения с растворителем, например с водой, обязательно надо учитывать. Водород карбоксильной группы в воде за счет электролитической диссоциации обменивается мгновенно, а водород в алкильном или арильном фрагменте молекулы обменивается очень трудно -- при нормальных условиях обмена нет. Между этими "крайними" примерами находится огромное многообразие молекул с разной способностью к "водородному обмену", и для разных биохимических процессов вопрос о стабильности тритиевой метки может быть или чрезвычайно актуальным или совершенно несущественным.

7. Радионуклид 14C

Радионуклид 14C получают облучением нитрида алюминия по реакции:

14N + 0n --> 14C + 1p

в виде 14C-карбида. Из него 14C выделяют в виде 14CО2, который обычно поглощают Ba(OH)2, и полученный 14C-карбонат является основным радиоактивным сырьем для всех синтезов 14C-соединений. Всё обилие 14C-меченых соединений в каталогах разных фирм-производителей синтезируется двумя путями:

34. Биосинтез. В питательную среду к микроорганизмам (обычно это водоросли типа хлореллы) добавляют 14CО2 в качестве единственного источника углерода. После выращивания из биомассы выделяют равномерно меченые 14C-соединения. Таким путем получают аминокислоты, нуклеозиды, сахара, липидные компоненты и другие природные соединения. Иногда 14C-биомассу водорослей используют как источник углерода (своего рода меченый пептон) для выращивания штамма-продуцента какого-нибудь важного соединений.

35. Химический синтез. Синтез всего многообразия органических веществ из карбоната -- классическая задача органической химии. Знаменитые цепочки превращений органических соединений (кошмар многих поколений студентов и школьников) в полной мере реализованы в синтезе 14C-соединений. Все органические соединения, которые не удается получить биосинтезом, синтезируют химически.

Схема распада углерода-14: 14C --> 14N + e. Хотя с детекцией 14C особых проблем не возникает, применение 14C-соединений в life science крайне ограничено. Это связано с очень низкой молярной активностью 14C-соединений, и даже кратно меченые молекулы не меняют ситуацию радикально. Обычно молярная активность 14C-соединений не превышает 20ч50 мКи/ммоль, (у соединений трития почти в 1000 раз выше, а у фосфора-32 или 33 еще в 100 раз выше) и, следовательно, по чувствительности методы с использованием 14C-соединений значительно уступают методам, в которых используют 3Н-соединения. На сегодняшний день 14C-соединения прочно удерживают за собой только одну "нишу" в life science -- это изучение метаболизма новых лекарственных (или косметических) препаратов. Для изучения деградации, накопления в органах, скорости и путей выведения, биодоступности и прочих аспектов метаболизма равномерно меченые 14C-соединения остаются востребованными, несмотря на очень высокую стоимость и трудоемкость синтеза.

8. Радионуклиды 32P и 33P

Радионуклиды 32P и 33P -- очень удобны для life science, но их применение ограничено природой, т.к. фосфор в природных органических соединениях присутствует гораздо реже, чем водород, углерод или кислород.

Получение радиоактивных изотопов фосфора (32Р и 33Р) с технической точки зрения одинаково: облучение элементарной серы особой чистоты в ядерном реакторе.

Однако, с экономической точки зрения разница колоссальная. Дело в том, что 32Р получают по реакции 32S + 0n --> 32P + 1p в виде 32P-ортофосфата. Стартовый материал мишени -- природная элементарная сера, содержащая более 92% стабильного изотопа 32S. Изотоп 33Р получают по реакции 33S + 0n --> 33P + 1p также в виде 33P-ортофосфата. Но мишенью для этой реакции служит изотоп 33S, содержание которого в природе составляет доли процента. Для получения 33Р высокого качества необходимо использовать для облучения только 33S с обогащением не ниже 98,5ч99,0%. Это сразу существенно увеличивает стоимость продукта, т.к. стоимость обогащенной серы-33 больше природной серы примерно на 6 порядков (в миллион раз). Поэтому соединения фосфора-33 всегда будут дороже аналогичных соединений, меченных фосфором-32.

Схемы распада радионуклидов фосфора : 32P --> 32S + e и 33P --> 33S + e

Исходным радиоактивным сырьем для получения соединений, меченных радиоактивными изотопами фосфора, всегда является ортофосфорная кислота (32Р или 33Р соответственно). Так как химия и биохимия 32Р и 33Р абсолютно одинаковы, в дальнейшем речь пойдет о фосфоре-32, с учетом того, что все это распространяется и на фосфор-33. В особых случаях, когда необходимо, будут отмечаться различия. Собственно сама 32Р-орто-фосфорная кислота в life science используется редко. Обычно это выращивание микроорганизмов (бактерий или дрожжей) или культуры клеток в среде, содержащей 32Р-ортофосфат. Полученную меченую биомассу отделяют от культуральной жидкости, а затем исследуют. Несколько замечаний по этому процессу.

36. Исходная 32Р-ортофосфорная кислота без носителя (этот термин означает, что в препарат не добавляли специально нерадиоактивную ортофосфорную кислоту) имеет молярную активность не менее 5000 Ки/ммоль, и, соответственно, концентрация собственно фосфата в среде только за счет радиоактивного фосфора будет не выше 10-8 М. Для биологических (микробиологических) работ такая концентрация фосфата в среде слишком низкая -- клетки будут "считать", что фосфора нет вообще. Поэтому в культуральную среду обязательно добавляется "холодный" фосфат в концентрации, необходимой для усваивания. Обычно это не ниже 10-4 М. Не пытайтесь "включить" радиоактивный фосфат в культуру клеток без "холодного" носителя. Часть радиоактивного фосфата просто сорбируется на поверхности посуды или клеток, а включения в клеточный обмен не произойдет.

37. Оптимальная концентрация фосфата для таких экспериментов подбирается индивидуально для разных задач и видов клеток. "Переносить" данные по оптимальной концентрации с одного вида экспериментов (или клеток) на другой надо осторожно.

Основными соединениями фосфора-32, применяемыми в life science, являются нуклеозид-5'-трифосфаты, меченные в альфа или гамма положении. В конце 60-х -- начале 80-х годов ХХ века было разработано несколько способов синтеза этих соединений, но после работы Джонсона и Валсеса, предложенный ими ферментативный способ стал рутиной как для лабораторного синтеза, так и для масштабного производства. Химические методы синтеза меченных фосфором-32 соединений используются, когда нет ферментативного пути, например для синтеза синтетических аналогов нуклеотидов.

Измерение активности радионуклидов 32Р и 33Р -- операция достаточно простая -- любой жидкостной сцинтилляционный в-счетчик считает 32Р и 33Р с эффективностью не ниже 90%. Для фосфора-32 использование сцинтиллятора совсем не обязательно. Обычно измерение фосфора-32 проводят за счет "свечения Черенкова" -- эффекта, обусловленного взаимодействием высокоэнергетических электронов с окружающей средой. Не вдаваясь в физические аспекты Черенковского свечения, следует знать, что сцинтилляционные счетчики "считают" фосфор-32 без всякого сцинтиллятора с эффективностью около 30%. Черенковское свечение фосфора-32 можно легко увидеть. Нанесите на подложку (пластинку ТСХ или фильтровальную бумагу) 1 мкл раствора 32Р-ортофосфорной кислоты (или любого другого соединения фосфора-32) с активностью 50 мкКи (около 2МБк) и поместите подложку между плоскостями двух кусков обычного стекла, толщиной 4ч5 мм. В темноте (только без "красного" света) через 3ч5 мин. адаптации глаза будет хорошо видно зеленовато-голубое свечение пятна, соответствующего точке нанесения раствора на подложку. Не подносите такой источник близко к глазам -- все прекрасно видно с расстояния 40ч60 см.

Весьма полезным для работы является возможность измерения фосфора-32 прямо в пластиковых пробирках, помещенных в стандартный сцинтилляционный флакон. На практике это означает, что вы можете измерять активность своего образца, например, вырезанный кусок из агарозного геля или пробирку с фракцией элюата хроматографического разделения, а затем использовать образец для дальнейшей работы. Такая особенность фосфора-32 является его важнейшим преимуществом перед другими в-радионуклидами, применяемыми в life science. Все остальные в-радионуклиды, приведенные выше в таблице 1, включая фосфор-33, требуют для измерения в сцинтилляционном счетчике прямого контакта с сцинтилляционной жидкостью, т.е. добавления образца прямо во флакон, содержащий сцинтиллятор. Естественно, после этого образец для дальнейшей работы теряется.

Среди радионуклидов, применяемых в life science, фосфор-32 является "рекордсменом" по чувствительности методик с его использованием. Однако, простой расчет чувствительности метода (поделите обычный предел обнаружения фосфора-32, т.е. около 3ч4 Бк, на максимальную молярную активность используемого соединения, т.е. около 2х1017 Бк/моль) показывает величину около 10-17 моля. К сожалению, это неправильно. Причина этого в высоком "биологическом" фоне. Например, при постановке ДНК-полимеразной реакции контрольная проба, в которую добавляют все компоненты реакции кроме фермента, также показывает некоторое "включение" радиоактивного фосфора в ДНК, на самом деле обусловленное просто неспецифической сорбцией радиоактивного предшественника биосинтеза. Такая неспецифическая сорбция есть всегда в любом биохимическом эксперименте и фактически чувствительность метода будет определяться величиной этого "биологического" фона. Например, в реакцию добавлено 0,1 МБк [б-32P] dNТР (это примерно 2х106 срм по Черенкову), ферментативое включение в ДНК около 30%, а неспецифическая сорбция -- фон -- составляет около 0,1%, т.е. 2х103 срм. Граница достоверности определяемой величины будет определяться именно неспецифической сорбцией (в этом примере 2х103 срм), которая обычно гораздо выше фона измерительной аппаратуры. В этом примере фон 2000 срм, и, следовательно, достоверная величина измеряемого эффекта должна быть не ниже 6000 срм, что в 30 раз снижает чувствительность по сравнению с "идеальной" расчетной.

Использование фофора-32, а позднее и фосфора-33, начиналось еще в 50-х годах ХХ века, однако после разработки методов секвенирования ДНК с помощью фосфора-32 спрос на соединения, меченные фосфором-32, достиг просто огромных величин. В "пике" потребления нуклеотиды, меченные фосфором-32, производились в мире в объеме несколько десятков кюри ежемесячно (это десятки тысяч фасовок каждый месяц), и только флюоресцентные методы секвенирования спустили потребление радиоактивного фосфора с заоблачных высот к нынешнему состоянию.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.