Рефераты. Радиоактивные изотопы и соединения

Иногда фирмы-производители искусственно "подогревают" интерес биохимиков к препаратам с очень высокой радионуклидной чистотой. Например, у йода много радиоактивных изотопов со своими индивидуальными ядерно-физическими характеристиками. Самый популярный в life science радиоизотоп йода -- 125I. Фирма "Амершам" (Amersham) очень гордится тем, что предлагает исследователям 125I с очень высокой радионуклидной чистотой -- содержание примесного 126I менее 0,01%. В то же время, практически для всех исследований в life science, включая радиоиммуноанализ, эта характеристика не является важной, и содержание других радиоактивных изотопов йода в целевом 125I может быть 0,1% и даже 1% без какого-либо ущерба для биологического осмысления полученных результатов.

5.2. Радиохимическая чистота [ % ]

Радиохимическая чистота (РХЧ) -- это содержание основного вещества, которое определяется обычно хроматографически (ВЭЖХ или ТСХ) в двух разных системах (условиях). Как правило, РХЧ не ниже 95%. Для большинства исследователей в life science РХЧ начинает представлять интерес, когда они "угробили" эксперимент и пытаются понять почему это произошло.

5.3. Объемная активность [МБк/мл (мКи/мл)]

Иногда объемную активность называют концентрацией радиоактивности (radioactive concentration), что вполне отражает суть. На все производимые меченые соединения в паспорте (сертификате) обязательно указывается дата паспортизации и "reference data" -- дата, на которую дается значение объемной активности. Большинство препаратов для life science, особенно соединения, меченные фосфором-32 или 33, имеют высокую объемную активность, и перепроверять (перемерять) заново величину, указанную в паспорте, просто жалко -- слишком большой расход материала. Так что исследователи просто рассчитывают необходимую им для работы активность, исходя их данных паспорта с учетом периода полураспада используемого радионуклида. Естественно, что учет распада радионуклида проводится для короткоживущих радиоактивных изотопов: фосфора, серы и йода, а для трития, и тем более для 14С этого не делают.

5.4. Молярная активность [Бк/моль (Ки/ммоль)]

Молярная активность -- это активность одного моля вещества, содержащего какой-то радионуклид. Устаревшие единицы измерения Ки/ммоль по-прежнему используются и даже чаще, чем современные Бк/моль. Это просто удобнее, т.к. величина высокой молярной активности (например, фосфора-32), выраженная в Бк/моль, часто вызывает у биологов панику. Сравните: 5000 Ки/ммоль равно 1,85х1017 Бк/моль.

В зарубежной научной литературе чаще используется термин "специфическая активность" (specific activity), который является синонимом молярной активности.

В русскоязычной литературе существует термин "удельная активность" -- активность одного грамма (иногда микрограмма) вещества, содержащего радионуклид. Обычно такая характеристика дается соединениям, молекулярный вес которых не определен или не известен. Например, препараты биополимеров (ДНК, РНК, белков) обычно характеризуют удельной активностью -- активностью одного микрограмма вещества. В англоязычной литературе термин "специфическая активность" (specific activity) означает и молярную, и удельную активность.

Молярная активность -- важнейшая характеристика меченого соединения, причем по нескольким причинам.

Во-первых, вы можете оценить долю собственно меченых соединений в препарате, предложенном вам для работы. Например, если препарат L-[35S]-метионина имеет молярную активность 300 Ки/ммоль, то, учитывая теоретическую молярную активность (1491 Ки/ммоль) для серы-35, нетрудно подсчитать, что в препарате только пятая часть молекул содержит изотоп 35S (300 : 1491 = 1/5), а остальные -- "холодные" молекулы -- не содержат радиоактивных атомов. Во-вторых, можно подсчитать молярную концентрацию меченого препарата. Для этого надо разделить объемную активность препарата (Ки/мл) на его молярную активность (Ки/ммоль) и получить концентрацию вещества в растворе в ммоль/мл (моль/л). Только будьте внимательны к единицам и множителям, чтобы не разделить объемную активность в мКи/мл на молярную активность в Бк/моль (или наоборот).

В-третьих, вы можете оценить предельно достижимую для вашего препарата чувствительность обнаружения соединения. Так, если ваш препарат [г-32P] ATP имеет молярную активность 1000 Ки/ммоль, то, учитывая границу достоверной количественной регистрации фосфора-32 в 10-10 Ки, вы сможете определить 10-10 / 103= 10-13 ммоль, т.е. 10-16 моль вещества. К сожалению, эта замечательная чувствительность на практике часто остается недостижимой, т.к. в количественных измерениях в life science обычно "биологический фон" эксперимента гораздо выше физического или приборного. Это подробно будет обсуждаться на примере использования соединений, меченных фосфором-32.

Следует подчеркнуть один очень интересный феномен, связанный с молярной активностью. Если молярная активность меченого препарата близка к теоретически возможной (более 90% от максимальной), то, независимо от периода полураспада радионуклида, величина молярной активности препарата будет практически постоянной. Это хорошо видно на примере 33Р-ортофосфорной кислоты с молярной активностью около 5000 Ки/ммоль. Действительно, согласно схеме радиоактивного распада фосфор-33 превращается в серу-33 и, следовательно, вместе с убыванием количества радиоактивных атомов (распадом) убывает (уменьшается) количество молекул фосфорной кислоты, т.к. из фосфорной H333РO4 образуется серная (H233SO4).

6. Радионуклид 3Н (тритий)

Тритий -- радиоактивный изотоп водорода, "чистый" в-излучатель, который легко нарабатывается в реакторе в значительном количестве.

Схема распада: 3Н --> e + 3He

Для life science тритий является самым востребованным и удобным радионуклидом по нескольким соображениям. Во-первых, практически любую органическую молекулу можно пометить тритием (лишь бы содержала водород). Во-вторых, тритий легко вводится в разные соединения, и химия этих процессов разработана лучше, чем для любого другого радионуклида. В-третьих, тритий -- это самый дешевый радионуклид, из используемых в life science. Есть прекрасная подробная монография по синтезу соединений, меченных тритием, (В.П. Шевченко, И.Ю. Нагаев, Н.Ф. Мясоедов, "Меченные тритием липофильные соединения" Москва, изд. "Наука" 2003г.), поэтому я только кратко перечислю основные методы получения 3Н-соединений.

28. Химический синтез гидрированием 3Н2 ненасыщенных связей, дегалоидирование и восстановление гидроксильных или карбонильных соединений.

29. Каталитический или термоактивированный водородный обмен.

30. Модификация соединений с помощью 3Н-метильных или 3Н-ацетильных групп.

31. Гидрирование Li[B3H4] или Li[Al3H4]

32. Введение 3Н за счет тритиевой воды (гидролиз или обмен).

33. Ферментативный синтез из 3Н-меченых предшественников.

Можно добавить биосинтез -- выращивание микроорганизмов на среде, содержащей 3Н-предшественник (например, [метил-3H] тимидин, для получения меченой ДНК), с последующим выделением целевого соединения. Однако, этот способ достаточно специфический и обычно применяется только в лабораторной практике для получения биополимеров.

Исторически так сложилось, что меченые тритием компоненты нуклеиновых кислот и аминокислоты стали инструментами для нескольких поколений ученых. Позднее к тритию добавился фосфор-32 (и фосфор-33) для нуклеиновых кислот и сера-35 для белков, и доля работ с тритием в этих направлениях снизилась.

Для исследователей липидов, простагландинов, гормонов, углеводов, антибиотиков, витаминов и многих других классов соединений, тритий -- главный (часто единственно доступный) инструмент повышения чувствительности методов. Это же касается исследований рецепторов, модуляторов и вообще "сигнальных" систем организмов. Поэтому тритий, не имеющий пока особых альтернатив, по-прежнему, остается основным "рабочим" радионуклидом в life science.

Главным недостатком трития является трудность его детекции и количественного измерения из-за слишком "слабого" в-излучения. Наиболее эффективный способ измерения -- жидкостной сцинтилляционый счет, о котором более подробно дана информация в разделе 2.2. Особо следует подчеркнуть, что именно для трития снижение эффективности счета ("гашение") играет существенную роль в количественных измерениях.

Авторадиография тритиевых соединений тоже имеет ряд специфических особенностей. Прямая детекция в-излучения трития фоточувствительным материалом -- процесс очень долгий и используется редко. Зато была предложена оригинальная модификация, согласно которой образец, содержащий тритий, обрабатывается сцинтилляционными веществами, и авторадиография превращается в своеобразную "автофлюорографию". Для пластин ТСХ -- это опрыскивание раствором РРО, который уже упоминался в разделе "жидкостной сцинтилляционный счет". После высушивания такая пластинка экспонируется с рентгеновской плёнкой, и далее -- как обычно.

Для ПААГ предложена процедура пропитки геля тем же РРО. Сначала приходится заместить воду в геле на диметилсульфоксид (DMSO), т.к. РРО нерастворим в воде. Затем гель пропитывают раствором РРО в DMSO, после чего обратно замещают DMSO на воду (РРО выпадает в геле в осадок и гель становиться белым). После всех этих процедур гель высушивают и экспонируют с рентгеновской пленкой. "Занудность" этих операций окупается сторицей -- получается возможность детекции продуктов, меченных тритием, (например пептидов, меченных 3Н-лейцином) сразу после электрофореза в ПААГ.

Еще одна "деликатная" сторона использования соединений, меченных тритием, -- это химическая стабильность таких соединений. Как ни странно на первый взгляд, но радиолиз -- химическое разрушение молекул под действием ионизирующего излучения -- именно для соединений трития играет весьма существенную роль. Это важно помнить, т.к. большой период полураспада (12 лет) якобы позволяет использовать синтезированные вещества в течение месяцев ( а иногда и лет) с момента паспортизации. Здесь надо быть очень осторожным, т.к. часто при неправильных условиях хранения вместо целевого соединения остается сложнейшая смесь продуктов радиолиза, где нужного соединения не более трети. Типичная ошибка -- хранение водного раствора тритиевого соединения в замороженном виде. В замороженном виде высокомеченные тритием соединения "рассыпаются" гораздо быстрее, чем в растворе. Поэтому для длительного хранения меченых тритием соединений при -20°С обязательно добавляют спирт или другой "антифриз", препятствующий замерзанию раствора.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.