Рефераты. Основы безвихревой электродинамики. Потенциальное магнитное поле

Основы безвихревой электродинамики. Потенциальное магнитное поле

1

УДК 537. 87. 872

Основы безвихревой электродинамики.

Кузнецов Ю.Н.

Часть1. Потенциальное магнитное поле.

На примере механического воздействия на тело даётся представление о

симметрийно-физических переходах в природных явлениях.

Распространение идеи переходов на магнитостатику предсказывает существование потенциального магнитного поля.

Излагаются логические доказательства истинности предсказания.

Даётся описание подтверждающих экспериментов.

Симметрийно-физический переход в механическом явлении.

Геометрии природных явлений и участвующих в них объектов обладают той, или иной степенью симметрии. В настоящей статье затрагиваются предельные цилиндрообразный и шарообразный варианты, характеризуемые преобразованием явления (объекта) самого в себя при непрерывном повороте вокруг одной, или двух имеющихся осей симметрии.

Согласно фактам предельная симметрия больше, чем разновидность геометрической формы. Она реально проявляет себя как действенная сторона явления, находящаяся в неразрывной связи с физическими свойствами участников и причинно-следственными отношениями между ними.

Зависимость физики явления от степени его предельной геометрической симметрии зримо проявляется в процессе практического осуществления симметрийного перехода, который происходит всегда ступенчато.

В качестве примера приведём симметрийно-физический переход в области механических явлений. В таблице 1 иллюстрируется факт физического перехода в явлении силового воздействия на тело при повороте одной из двух однонаправленных сил () на 180°.

Таблица 1

Закон Ньютона

Однонаправленным силам

пропорционально ускорение тела

Закон Гука

Центрально-симметричным

(противонаправленным) силам

пропорциональна деформация тела.

При изменении симметрии действующих сил ускорение тела сменяется его деформацией, а вместо инерционного проявляется другое своё же свойство тела - его упругость.

Ньютоновская причинно-следственная связь переходит в гуковскую.

Симметрийно-физический переход в магнитостатике.

Симметрийный аспект. По аналогии с механическим примером возможен переход физических свойств магнитного поля (таблица 2) при повороте одного из двух однонаправленных токов (i2) на 180°.

Известные электромагнитные поля, с точки зрения их геометрической структуры, обладают либо замкнутыми, либо разомкнутыми силовыми линиями. Других вариантов в электромагнетизме нет.

. Поэтому безальтернативно выдвигается предположение о замене в центрально-симметричной магнитостатике исходного циркуляционного свойства магнитного поля с цилиндрообразной симметрией на потенциальное, обладающее шарообразной симметри-

Таблица 2.

Теорема

о циркуляции магнитного вектора.

i1 i2

Однонаправленным токам

пропорциональна циркуляция вектора магнитной напряжённости поля вдоль замкнутой линии, охватывающей токи.

Гауссоподобная теорема

о потоке магнитных векторов.

i1 i2

Центрально-симметричным (противонаправленным) токам прапор-

ционален поток векторов магнитной

напряжённости поля по замкнутой

поверхности, охватывающей токи.

ей, подобной симметрии поля электрического заряда. Новое отношение между центрально-симметричным токовым источником и его более симметричным потенциальным магнитным полем предполагается аналогичным гауссовой причинно-следственной связи для электростатики.

В природном явлении предельные симметрии причины и следствия не могут быть разными. Исскуственный перевод причины (токового источника) к более симметричному виду предположительно сопровождается аналогичным переходом в следствии (в магнитном поле).

Идея о потенциальном магнитном поле с шарообразной симметрией присутствует в гипотезе Дирака о магнитном микромонополе.

Физический аспект. Известные знания о протяжённых структурах полей получены из эмпирических фактов о результатах их локальных воздействий на электрические заряды.

Следовательно, предполагаемый переход к другой структуре магнитного поля может быть подтверждён только доказательством перехода к другой направленности локальных магнитных сил в рамках их релятивистской природы.

Для ясного понимания причины и непосредственного видения механизма такого перехода в последующем изложении приводятся в сопоставлении два одинаковых по своей сути примера, сочетающих логику и очевидность.

Первый наглядно-логический пример предложен лауреатом нобелевской премии профессором Э. Парселлом [1]. В нем положительный пробный заряд Q ортогонально сближается с двумя однонаправленными токами зарядов i1, i2 (Рис.1). Чёрные кружки обозначают положительные токовые заряды, движущиеся вдоль указанного стрелками направления тока. А светлые - отрицательные, движущиеся в противоположном направлении. Рассмотрение идёт в системе покоя пробного заряда. В таком случае наклонённые векторы суммарных скоростей ?V характеризуют как движение зарядов в проводнике, так и их сближение с покоящимся пробным зарядом. Наклонёнными оказываются и релятивистски «сплющенные» диаграммы силовых линий полей токовых зарядов.

Суть парселловской идеи в том, что в областях сгущений силовых линий воздействие каждого токового заряда на пробный усиливается, а в областях разряжения - уменьшается. Общая релятивистская составляющая силового воздействия при однонаправленных токах наглядно представляется ориентированной поперечно к скорости движения пробного заряда и подчиняющейся правилу левой руки.

Автором был предложен [2] аналогичный пример, основывающийся на той же парселловской идее. В нём, как и в таблице 2, всего лишь изменяется на 180° направление тока i2, сопровождаемое соответствующим поворотом диаграмм релятивистских «сплющиваний». В результате общая релятивистская составляющая силового воздействия становится ориентированной вдоль скорости движения пробного заряда (Рис.2).

Форма и количество релятивистского эффекта в поле каждого движущегося заряда,

как в однонаправленных, так и в центрально-симметричных токах, соответствуют специальной теории относительности. Разнятся лишь симметрии их наложения в области

пробного заряда, что и является истинной причиной существования поперечного и

продольного направлений магнитной силы.

i1 i2

?V

Q

Рис.1

i1 i2

?V

Q

Рис.2

Изменению магнитообрузующего свойства токового источника (более симметричному сочетанию диаграмм релятивистских эффектов) соответствует изменение взаимодействующего свойства общего поля движущихся зарядов (более симметричная направленность магнитной силы).

Примером монопольного источника потенциального магнитного поля является равномерное в обе стороны растяжение упругой электрически заряженной нити, приводя-

щее к образованию центрально-симметричных (противонаправленных) токов переноса зарядов.

Материальный аспект. Приведенное обоснование подтвердим другим подходом, опирающимся на фундаментальные природные принципы.

В удалённых от центрально-симметричного токового источника локальных областях пространства геометрическое суммирование равных и противоположно направленных векторов магнитной напряжённости Н и магнитного потенциала А везде даёт в итоге нуль-векторы. Математически корректные нуль-векторы с физической точки зрения иррациональны, поскольку не отвечают принципу наблюдаемости (измеряемости) природного объекта.

Вместе с тем, после осуществления симметрийного перехода магнитная энергия во всём пространстве остаётся неизменной, поскольку составляющие однонаправленных и центрально-симметричных токов i1, i2, расположены на одной прямой линии (Рис.1,2).

В обоих случаях нет причин для превращения даже части магнитной энергии в другие формы при условном сближении вдоль общей прямой линии левой и правой токовых составляющих из бесконечности, так как на всей её протяжённости магнитное поле равно нулю. Поэтому однонаправленные и противонаправленные токовые составляющие одинаково не взаимодействуют между собой ни силовым, ни индукционным способами.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.