Рефераты. Нанотехнология

Основные методы создания тонкопленочных структур можно разбить на два больших класса, базирующихся на физическом (в первую очередь, молекулярно-лучевой эпитаксии) и химическом осаждении. При малой толщине (до нескольких атомных слоев) двумерная подвижность осаждаемых на подложку атомов может быть очень высокой. В результате быстрой диффузии по поверхности происходит самосборка нанообъектов, обладающих ярко выраженными квантовыми свойствами: образуются квантовые точки, квантовые ямы, квантовые проволоки, кольца и др. Если систему квантовых точек покрыть слоем инертного материала, а затем снова напылить активный материал, то опять образуются островки, самоупорядочивающиеся на поверхности и даже скоррелированные с положением их предшественников. Повторяя такие процедуры множество раз, можно получить объемно упорядоченные структуры (квазирешетки) из квантовых ям или точек, называемые гетероструктурами, и сделать на их основе лазерные источники света, фотоприемники (в том числе инфракрасного излучения в области длин волн 8--14 мкм, соответствующей максимуму теплового излучения человеческого тела), накопители информации. Вся современная микроэлектроника базируется на планарных полупроводниковых технологиях, которые дают возможность создавать самые разнообразные многослойные тонкопленочные структуры с функциями сенсоров, логической и арифметической обработки сигнала, его хранения и передачи по электронным или оптическим линиям связи.

Наноэлектроника следующих поколений

Любые достижения в нанонауке сначала рассматриваются под углом их приложимости к информационным технологиям. Можно выделить несколько крупных направлений атаки на этом участке фронта:

- уже упоминавшиеся различные устройства на углеродных нанотрубках;

- одноэлектроника, спинтроника и джозефсоновская электроника, в том числе квантовые компьютеры;

- молекулярная электроника, в частности, с использованием фрагментов ДНК;

- сканирующие зондовые методы.

Несмотря на нарастающий уровень трудностей, в течение трех последних десятилетий поддерживается неизменный и очень высокий темп роста всех существенных характеристик в микроэлектронике. Наиболее революционные достижения приближаются к квантовым пределам, положенным самой Природой - когда работает один электрон, один спин, квант магнитного потока, энергии и т.д. Это сулит быстродействие порядка ТГц (~1012 операций в секунду), плотность записи информации ~103 Тбит/см2, что на много порядков выше, чем достигнутые сегодня, а энергопотребление - на несколько порядков ниже. При такой плотности записи в жестком диске размерами с наручные часы можно было бы разместить громадную библиотеку национального масштаба или фотографии, отпечатки пальцев, медицинские карты и биографии абсолютно всех (!) жителей Земли. Действительно, с принципиальной точки зрения для оперирования в двоичной системе исчисления необходимы элементы, которые способны реализовывать два устойчивых (стабильных во времени и не разрушаемых термическими флуктуациями) состояния, соответствующие “0” и “1”, и допускать быстрое переключение между ними. Такие функции может выполнять электрон в двухуровневой системе (например, в двухатомной молекуле - перейти с одного атома на другой). Это реализовало бы заветную мечту - одноэлектронное устройство. К сожалению, пока лучшие современные электронные средства неэкономно “тратят” сотни, тысячи электронов на одну операцию. Другая возможность - переориентировать спин электрона из одного устойчивого состояния в другое (например, воздействуя магнитным полем), чем и занимается спинтроника.

Динамика развития микроэлектроники в предшествующие 30 лет и прогноз на следующее десятилетие на примере роста параметров больших интегральных схем оперативной памяти для персональных компьютеров.

Магнитные квантовые эффекты задействованы также в работе сверхпроводящих элементов, включающих джозефсоновский переход. Последние представляют собой две сверхпроводящие пленки, разделенные тонким слоем (~1 нм) диэлектрика. Один или несколько джозефсоновских контактов включаются в обычную электрическую цепь. Электроны в сверхпроводнике ведут себя скоррелированно, в результате чего ток и созданный им магнитный поток квантуются: в кольце из двух джозефсоновских контактов, включенных параллельно, может укладываться только целое число длин электронных волн, а внутри такого кольца может существовать не любой магнитный поток, а только кратный целому числу квантов магнитного потока. Это обеспечивает автоматический переход от аналогового способа представления информации к дискретному.

Элементы быстрой одноквантовой логики, в которых единицей информации служит квант магнитного потока, позволяют обрабатывать сигналы с частотами выше 100 ГГц при крайне низком уровне диссипации энергии. Особенно ценно то, что такая структура является одновременно и логическим элементом, и ячейкой памяти. Поскольку объем данных, передаваемых в Интернете, удваивается каждые три-четыре месяца, в ближайшей перспективе даже лучшие из разрабатываемых сейчас полупроводниковых приборов не смогут пропускать такие большие потоки. Трехмерные структуры, состоящие из сложенных в стопу джозефсоновских электронных схем, видятся сейчас как единственная альтернатива планарным полупроводниковым микросхемам.

Наноструктурированная джозефсоновская электроника как нельзя лучше подходит в качестве физической среды для конструирования квантовых компьютеров . На основе двумерных сеток джозефсоновских контактов может быть также создан новый тип компьютерной памяти, строящийся не на базе традиционной логики, а использующий ассоциативную, распределенную по всей структуре память, подобно нейронным сетям живых организмов. Такая система будет способна распознавать образы, принимать оперативные решения в многофакторных ситуациях (например, в экономике, оборонных задачах, космических исследованиях) в реальном времени без механического перебора всех возможных вариантов. По-видимому, криогенная электроника не будет конкурировать с традиционной полупроводниковой во всех существующих сейчас областях применения. Ее задача - обеспечить основу для новых поколений суперкомпьютеров и высокопроизводительных опорных телекоммуникационных систем, создание которых было бы коммерчески оправданно, несмотря на затраты, обусловленные необходимостью глубокого охлаждения.

В физических лабораториях уже разработано множество джозефсоновских элементов и устройств для применения в качестве не только логических элементов и ячеек памяти, устройств квантового кодирования и передачи данных, но и генераторов и приемников миллиметровых и субмиллиметровых излучений, а также высокочувствительных датчиков магнитного поля, электрического заряда, напряжения, тока, теплового потока и т.д. Подобные датчики при регистрации малых сигналов имеют чувствительность вблизи фундаментального квантового предела, т.е. в тысячи, десятки тысяч раз выше, чем у традиционных полупроводниковых устройств. Это позволяет использовать их в бесконтактной медицинской диагностике (магнитокардиографы, магнитоэнцефалографы). На повестке дня - создание магнитной томографии, позволяющей по картине магнитного поля следить за функционированием органов, внутриутробным развитием плода в реальном масштабе времени.

Как реальная альтернатива “кремниевой” электронике в недалеком будущем многими специалистами рассматривается молекулярная электроника. Тому есть несколько причин. Природа создала за миллионы лет эволюции самые разнообразные молекулы, выполняющие все необходимые для сложного организма функции: сенсорные, логически-аналитические, запоминающие, двигательные. Зачем разрабатывать и производить искусственные структуры из отдельных атомов при наличии готовых строительных “блоков”? Тем более что они имеют оптимальную конфигурацию, структуру и нанометровые размеры. В настоящее время существующих фундаментальных знаний и нанотехнологий достаточно лишь для демонстрации принципиальных возможностей создания практически всех структур, необходимых для информационных технологий и микроробототехники . Однако нет сомнений, что в ближайшем будущем они будут играть важную роль во многих приложениях. Молекулярная электроника входит составной частью в более крупную отрасль - нанобиотехнологию, занимающуюся биообъектами и биопроцессами на молекулярном и клеточном уровне  и держащую ключи к решению многих проблем экологии, медицины, здравоохранения, сельского хозяйства, национальной обороны и безопасности.

Глаза и пальцы нанотехнологии

Появление наноструктур потребовало новых методов и средств, позволяющих изучать их свойства. С момента изобретения Г.Биннингом и Г.Рорером первого варианта сканирующего туннельного зондового микроскопа в 1982 г. прошло всего 20 лет, но за это время из остроумной игрушки он превратился в один из мощнейших инструментов нанотехнологии. Сейчас известны десятки различных вариантов зондовой сканирующей микроскопии (SPM - scanning probe microscopy).

Как видно из названия, общее у этих методов - наличие зонда (чаще всего это хорошо заостренная игла с радиусом при вершине ~10 нм) и сканирующего механизма, способного перемещать его над поверхностью образца в трех измерениях. Грубое позиционирование осуществляют трехкоординатными моторизированными столами. Тонкое сканирование реализуют с помощью трехкоординатных пьезоактюаторов, позволяющих перемещать иглу или образец с точностью в доли ангстрема на десятки микрометров по х и y и на единицы микрометров - по z. Все известные в настоящее время методы SPM можно условно разбить на три основные группы:

- сканирующая туннельная микроскопия; в ней между электропроводящим острием и образцом приложено небольшое напряжение (~0.01-10 В) и регистрируется туннельный ток в зазоре, зависящий от свойств и расположения атомов на исследуемой поверхности образца;

- атомно-силовая микроскопия; в ней регистрируют изменения силы притяжения иглы к поверхности от точки к точке. Игла расположена на конце консольной балочки (кантилевера), имеющей известную жесткость и способной изгибаться под действием небольших ван-дер-ваальсовых сил, которые возникают между исследуемой поверхностью и кончиком острия. Деформацию кантилевера регистрируют по отклонению лазерного луча, падающего на его тыльную поверхность, или с помощью пьезорезистивного эффекта, возникающего в самом кантилевере при изгибе;

- ближнепольная оптическая микроскопия; в ней зондом служит оптический волновод (световолокно), сужающийся на том конце, который обращен к образцу, до диаметра меньше длины волны света. Световая волна при этом не выходит из волновода на большое расстояние, а лишь слегка “вываливается” из его кончика. На другом конце волновода установлены лазер и приемник отраженного от свободного торца света. При малом расстоянии между исследуемой поверхностью и кончиком зонда амплитуда и фаза отраженной световой волны меняются, что и служит сигналом, используемым при построении трехмерного изображения поверхности.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.