Рефераты. Конструирование ГИМС

К плёночным резисторам предъявляются следующие основные требования:

1. стабильность во времени;

2. малая занимаемая площадь на подложке;

3. низкий температурный коэффициент сопротивления;

4. требуемая мощность рассеяния;

5. низкий уровень шумов;

6. малые значения паразитных параметров.

В техническом задании имеются резисторы со следующими характеристиками: R = 1100:12000 Ом, ?R = 15%, P=10:25мВт. Наиболее часто для материалов резисторов используют хром, нихром, тантал, нитрид тантала, сплавы МЛТ-3М и РС-3001. Нихром, тантал и нитрид тантала имеют небольшое значение ?s: не более 300 Ом/?, что при моём интервале сопротивлений даст большие геометрические размеры элементов. У хрома значение Р0=1Вт/см, что увеличит значение bp, а значит
и размеры моих резисторов. Сплав МЛТ-3М имеет ?s всего 500 Ом/?,
а РС-3001 - 1000?2000 Ом/?, что даст мне возможность получить резисторы с оптимальными размерами. Так же РС-3001 имеет значение ?Rст всего 0.5%.
В силу приведённых выше преимуществ я выбрал сплав РС-3001.

Элементы пленочной ГИС объединяются в единую систему с помощью системы пленочных коммутационных проводников, которые в местах соединения с другими пленочными элементами образуют контактные пары. Контактные площадки в ГИС необходимы для присоединения внешних выводов ГИС и выводов навесных элементов.

К проводникам предъявляется масса требований: они должны с минимальными потерями проводить напряжение питания к функциональным компонентам ГИС, с минимальными искажениями передавать сигналы, обеспечивать надежный контакт с элементами гибридной интегральной схемы. Требования, предъявляемые к пленочным проводникам и контактным площадкам, в ряде случаев являются противоречивыми. Например, с увеличением ширины проводника уменьшается индуктивность, но растёт ёмкость относительно близлежащих элементов.

При изготовлении коммутационных соединений и контактных площадок тонкопленочной ГИС часто применяют многослойную структуру, состоящую из подслоя, токопроводящего и защитного слоев. Подслой, выполняемый из нихрома, хрома, ванадия и других материалов, улучшает адгезию токопроводящих слоев с подложкой. Для проводящих слоёв хорошо подходят золото, медь, тантал, Al. Верхний слой многослойной структуры выполняется из никеля, серебра и служит для защиты от внешних воздействий. Для защиты проводников и контактных площадок иногда производят их облуживание припоем. Из проводящих материалов часто применяются золото, медь, алюминий. Золото - очень дорогой материл, так же он требует нанесения подслоя из нихрома, его используют в микросхемах повышенной надёжности, в моём же случае это не обязательно. Медь для защиты от коррозии нужно обязательно покрывать слоем золота, никеля или серебра, что повысит стоимость. Для пайки медные контактные площадки облуживают погружением схемы в припой, но тогда надо защищать остальные плёночные элементы. В качестве материала проводников я выбрал алюминий. Он обладает высокой коррозийной стойкостью, никелируют его только для пайки. В моём случае присоединение выводов осуществляется сваркой, а потому алюминий я могу использовать без дополнительных слоёв. Так же он дёшев, широко распространён. В соответствии с таблицей 1.2 материалом контактных площадок для РС-3001 является структура: золото с подслоем нихрома. Так как я для этой цели использую алюминий, я обязан увеличить значение ?RК на 1%.

1.2 Выбор конструкции пленочных элементов и описание методики их расчета

1.2.1 Резистор.

Пленочный резистор конструктивно состоит из резистивной пленки, имеющей определенную конфигурацию, и контактных площадок. На рисунке 1.1 представлены наиболее часто применяемые их конфигурации: на рисунке 1.1 а - резистор прямоугольной формы, подходящий для резисторов с небольшим сопротивлением и коэффициентом формы меньше 10, на рисунке 1.1 б - резистор типа меандр. Данную конфигурацию используют для резисторов с большим сопротивлением и коэффициентом формы больше 10. Во всех конфигурациях отсутствуют наклонные кривые линии различных радиусов, поэтому изготовление фотошаблонов резистивных слоев ГИС существенно упрощается.

1.2.3 Описание методики расчета резистора

Конструктивный расчет тонкопленочных резисторов заключается в определении формы, геометрических размеров и минимальной площади, занимаемой резисторами на подложке. При этом необходимо, чтобы резисторы обеспечивали рассеивание заданной мощности при удовлетворении требуемой точности ?R в условиях существующих технологических возможностей.

Порядок расчета резистора прямоугольной формы

Рассчитаем коэффициент формы Кф по формуле (1.1)

Кф = (1.1)

где R - номинальное значение сопротивления, Ом;

?S - поверхностное сопротивление материала, Ом/?.

Рассчитаем минимальную ширину резистора bр, мм, при которой обеспечивается заданная мощность по формуле (1.2)

bр = (1.2)

где Р - мощность, Вт;

Р0 -предельное значение удельной мощности рассеяния, Вт/см2.

Рассчитаем температурную погрешность ?Rt,%, по формуле (1.3)

?Rt = ?R*(tmax - 20°C)*100% (1.3)

где ?R - температурный коэффициент сопротивления, 1/°С;

tmax - температурный диапазон, °С.

Рассчитаем относительную погрешность коэффициента формы ?Кфmax,%, по формуле (1.4)

?Кфmax = ?R - ??s - ?Rt - ?Rk - ?Rст (1.4)

где ?R - относительная погрешность сопротивления, %;

??s - относительная погрешность формирования поверхностного сопротивления ,%;

?Rt - температурная погрешность, %;

?Rk - погрешность сопротивления контактной области, %;

?Rст - относительная погрешность сопротивления, %.

Рассчитаем минимальную ширину резистора bточн, мм, обусловленную точностью воспроизведения, по формуле (1.5)

bточн = (1.5)

где ?l,?b - абсолютная погрешность формирования геометрических размеров, мм;

Выбираем ширину резистора не меньше самого большого из трех значений bтехн, bP, bточн по формуле (1.6)

b > = max (bтехн; bP; bточн) (1.6)

где bтехн - разрешающая способность метода формирования пленки, мм.

Рассчитаем рабочую длину резистора l, мм, по формуле (1.7)

l = b*КФ (1.7)

Рассчитаем полную длину резистивной пленки l0, мм, по формуле (1.8)

l0 = l + 2*l1 (1.8)

где l1 - величина перекрытия резистивной и проводящей пленок, мм.

Площадь S, мм, занимаемая резистором рассчитывается по формуле (1.9)

S = b*l0 (1.9)

1.3 Расчет топологических размеров элементов

1.3.1 Расчет топологических размеров резисторов

В результате проведения расчетов у меня получилось 13 резисторов прямоугольной формы, эскиз которого приведён на рисунке 1.1 а. Результаты расчёта резисторов приведены в таблице 1.4.

Таблица 1.4 Результаты расчета резисторов.

Наименование

элемента

КФ

bP

мм

?Rt

%

?Кфmax

%

bтех

мм

bточн

мм

b

мм

l

мм

l0

мм

S

мм2

R1

1

0,7

2.1

8,4

0,2

0,48

0,8

0,8

1,3

0,91

R2

2.5

0,45

2.1

8.4

0,2

0,33

0,45

1,13

1,73

0,78

R3

5.1

0.31

2.1

8.4

0,2

0,29

0,35

1,8

2,4

0,84

R4

3

0,5

2.1

8.4

0,2

0,32

0,5

1,5

2,1

1,05

R5

7.3

0,37

2.1

8.4

0,2

0,27

0,4

2,9

3,5

1,4

R6

11

0,34

2.1

8.4

0,2

0,5

0,5

5,5

6,1

3,05

R7

6.5

0,39

2.1

8.4

0,2

0,27

0,4

2,6

3,2

1,28

R8

1

0,7

2.1

8,4

0,2

0,48

0,8

0,8

1,3

0,91

R9

5.1

0.31

2.1

8.4

0,2

0,29

0,35

1,8

2,4

0,84

R10

3

0,5

2.1

8.4

0,2

0,32

0,5

1,5

2,1

1,05

R11

6.5

0,39

2.1

8.4

0,2

0,27

0,4

2,6

3,2

1,28

R12

7.3

0,37

2.1

8.4

0,2

0,27

0,4

2,9

3,5

1,4

R13

2.5

0,45

2.1

8.4

0,2

0,33

0,45

1,13

1,73

0,78

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.