Рефераты. Кинематика и динамика поступательного движения

(12.2)

Сдвиг фаз определяется по форме эллипса, описываемого на экране осциллографа электронным лучом, если вертикальные пластины осциллографа соединить с выходом звукового генератора, а горизонтальные - с микрофоном. При разности фаз = 2n

(n=0, 1, 2, ...) эллипс вырождается в прямую, проходящую через первую и третью четверти координатной плоскости, а при =(2n+1) - в прямую, проходящую через вторую и четвертую четверти.

Проведение эксперимента

Измерения и обработка результатов

1. Собирают электрическую схему установки. Микрофон располагают рядом с громкоговорителем. Подают напряжение от звукового генератора на телефон. По лимбу генератора выставляют частоту звуковых колебаний (между 1000 и 3000 Гц).

2. Медленно перемещая микрофон к противоположному концу измерительной скамьи, находят такое его положение, при котором на экране осциллографа появляется прямая линия. Делают отсчет положения микрофона.

3. Продолжая перемещать микрофон, находят несколько следующих его положений, в которых на экране осциллографа появляется такая же прямая линия, как и в первом положении.

4. Вычисляют расстояния l1 , l2 , l3 ... между двумя последующими положениями микрофона на измерительной скамье. Находят их среднее значение.

5. По формуле (12.2) вычисляют скорость распространения звуковой волны в воздухе. Находят погрешность ее измерения.

6. Измерения повторяют для двух других частот. Находят среднее значение скорости звука по всем измерениям.

7. Для сравнения полученного результата с табличными данными вычисляют скорость звука при условиях опыта, пользуясь соотношением

, (12.3)

где - температура воздуха в комнате (в кельвинах), V0 - скорость звука при 0С (331 м/с).

ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТОДОМ
КРУТИЛЬНЫХ КОЛЕБАНИЙ

Цель работы

Экспериментальное определение модулей сдвига различных материалов методом крутильных колебаний.

Идея эксперимента

Крутильный маятник представляет собой стержень или проволоку, верхний конец которой закреплен. К нижнему концу проволоки подвешивается тело произвольной формы. Если закрутить проволоку, т.е. вывести маятник из положения равновесия, то в системе возникнут крутильные колебания (t). Очевидно, что период этих колебаний зависит от геометрии системы, от момента инерции подвешенного тела и от упругих свойств материала подвеса. Это позволяет, изучая крутильные колебания, определить одну из важнейших характеристик материала, - модуль сдвига.

Теория

Если момент пары сил, приложенных касательно к незакрепленному концу проволоки, равен М, то угол кручения (угловое смещение колебательной системы) по закону Гука оказывается равным = сМ, где с - коэффициент, зависящий от упругих свойств материала проволоки. Модуль кручения f, равный

, (13.1)

показывает, какой момент сил надо приложить, чтобы закрутить проволоку на угол в один радиан.

Модуль сдвига G равен

, (13.2)

где F/S определяет величину касательной силы, приходящейся на единицу поверхности, а - угол сдвига (рис. 28).

Между модулем кручения и модулем сдвига материала существует простое соотношение

, (13.3)

где r - радиус цилиндрической проволоки, L - ее длина.

Подвешенное на проволоке твердое тело при возникновении в системе крутильных колебаний совершает вращательные движения, к которым может быть применен основной закон динамики вращательного движения

, (13.4)

где M - вращательный момент относительно оси подвеса, J - момент инерции тела относительно той же оси, - угловое ускорение. Используя (13.1) и учитывая, что угловое ускорение направлено против углового смещения , можно записать

. (13.5)

Из этого уравнения видно, что в рассматриваемом движении ускорение пропорционально угловой координате - смещению и направлено противоположно ему, что является существенным признаком гармонического колебания , где 0 - циклическая частота. Поэтому 0 должен быть равен

, (13.6)

где Т - период колебаний.

Далее

, (13.7)

откуда

. (13.8)

Экспериментальная установка

В данной работе крутильный маятник представляет собой штангу Ш, подвешенную на проволоке А (рис. 29). Верхний конец проволоки закреплен с помощью винта В в держателе Д. Для выведения маятника из положения равновесия, т. е. для первоначального закручивания проволоки служит пусковое устройство П. Вдоль штанги могут перемещаться два груза Г одинаковой массы m. Изменяя расстояния l от грузов до центра штанги, можно изменять момент инерции маятника, а вместе с этим и период колебаний маятника.

Для того, чтобы из выражения (13.8) найти модуль кручения f материала проволоки, необходимо исключить неизвестный момент инерции J. Для этого в работе определяются два периода колебаний маятника при разных моментах инерции

, (13.9)

откуда

. (13.10)

Момент инерции крутильного маятника складывается из моментов инерции грузов 2ml2 и суммарного момента инерции штанги и проволоки j

. (13.11)

Для исключения j вычтем J1 из J2

. (13.12)

Подставляя сюда из соотношения (13.10) значение , получаем

. (13.13)

Подставив, наконец, это выражение в уравнение (13.7), находим модуль кручения

. (13.14)

Для модуля сдвига получается выражение

. (13.15)

Проведение эксперимента

Измерения

1. Подвешивают стержень крутильного маятника на выбранную проволоку. Надевают на концы штанги грузы Р. Наблюдая за положением равновесия штанги с грузами и понемногу перемещая грузы, уравновешивают штангу в горизонтальном положении. Измеряют радиус проволоки r и длину подвеса L. Записывают массы грузов m.

2. Сообщают маятнику вращательный импульс так, чтобы он совершал крутильные колебания с небольшой амплитудой. Для этого легким рывком отодвигают в сторону рычажок пускового механизма Н. Следят за тем, чтобы при пуске не возникали поступательные колебания.

3. Измеряют суммарное время t1 50-100 колебаний маятника. Измеряют расстояние l1 от оси вращения до середины одного из грузов.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.