Рефераты. Энергия

В конце XIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор - в сущности первое устройство, превращавшее солнечную энергию в механическую. Но принцип был тем же: большое вогнутое зеркало фокусировало солнечные лучи на паровом котле, который приводил в движение печатную машину, делавшую по 500 оттисков газеты в час. Через несколько лет в Калифорнии построили действующий по такому же принципу конический рефлектор в паре с паровой машиной мощностью 15 л. с.

И хотя с той поры то в одной, то в другой стране появляются экспериментальные рефлекторы-нагреватели, а в публикуемых статьях все громче напоминают о неиссякаемости нашего светила, рентабельнее они от этого не становятся и широкого распространения пока не получают: слишком дорогое удовольствие это даровое солнечное излучение.

Сегодня для преобразования солнечного излучения в электрическую энергию мы располагаем двумя возможностями: использовать солнечную энергию как источник тепла для выработки электроэнергии традиционными способами (например, с помощью турбогенераторов) или же непосредственно преобразовывать солнечную энергию в электрический ток в солнечных элементах. Реализация обеих возможностей пока находится в зачаточной стадии. В значительно более широких масштабах солнечную энергию используют после ее концентрации при помощи зеркал - для плавления веществ, дистилляции воды, нагрева, отопления и т. д.

Поскольку энергия солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточной поверхностью.

Простейшее устройство такого рода-плоский коллектор; в принципе это черная плита, хорошо изолированная снизу. Она прикрыта стеклом или пластмассой, которая пропускает свет, но не пропускает инфракрасное тепловое излучение. В пространстве между плитой и стеклом чаще всего размещают черные трубки, через которые текут вода, масло, ртуть, воздух, сернистый ангидрид и т. п. Солнечное излучение, проникая через стекло или пластмассу в коллектор, поглощается черными трубками и плитой и нагревает рабочее вещество в трубках. Тепловое излучение не может выйти из коллектора, поэтому температура в нем значительно выше (па 200-500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые парники, по сути дела, представляют собой простые коллекторы солнечного излучения. Но чем дальше от тропиков, тем менее эффективен горизонтальный коллектор, а поворачивать его вслед за Солнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавливают под определенным оптимальным углом к югу.

Более сложным и дорогостоящим коллектором является вогнутое зеркало, которое сосредоточивает падающее излучение в малом объеме около определенной геометрической точки - фокуса. Отражающая поверхность зеркала выполнена из металлизированной пластмассы либо составлена из многих малых плоских зеркал, прикрепленных к большому параболическому основанию. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу-это позволяет собирать возможно большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов достигает 3000°С и выше.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт*год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы. Но, тем не менее, станции-преобразователи солнечной энергии строят и они работают.

С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека.

Крымская СЭС невелика - мощность всего 5 МВт. В определенном смысле она - проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.

На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10-20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные - до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях.

По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.

Но, для примера, электростанция на солнечных батареях вблизи экватора с суточной выработкой 500 МВт·ч (примерно столько энергии вырабатывает довольно крупная ГЭС) при к.п.д. 10% потребовала бы эффективной поверх-ности около 500000 м2. Ясно, что такое огромное коли-чество солнечных полупроводниковых элементов может. окупиться только тогда, когда их производство будет действительно дешево. Эффективность солнечных элек-тростанций в других зонах Земли была бы мала из-за неустойчивых атмосферных условий, относительно сла-бой интенсивности солнечной радиации, которую здесь даже в солнечные дни сильнее поглощает атмосфера, а также колебаний, обусловленных чередованием дня и ночи.

Тем не менее солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле - в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радио-аппаратура, электрические бритвы и зажигалки и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спут-нике Земли (запущенном на орбиту 15 мая 1958 г.).

Идет работа, идут оценки. Пока они, надо признать, не в пользу солнечных электростанций: сегодня эти сооружения все еще относятся к наиболее сложным и самым дорогостоящим техническим методам использования гелиоэнергии. Нужны новые варианты, новые идеи. Недостатка в них нет. С реализацией хуже.

Атомная энергия.

При исследовании распада атомных ядер оказалось, что каждое ядро весит меньше, чем сумма масс его протонов и нейтронов. Это объясняется тем, что при объединении протонов и нейтронов в ядро выделяется много энергии. Убыль массы ядер на 1 г эквивалентна такому количеству тепловой энергии, какое получилось бы при сжигании 300 вагонов каменного угля. Не уди-вительно поэтому, что исследователи приложили все силы, стремясь найти ключ, который позволил бы “открыть” атомное ядро и высвободить скрытую в нем огромную энергию.

Вначале эта задача казалась неразрешимой. В ка-честве инструмента ученые не случайно выбрали ней-трон. Эта частица электрически нейтральна, и на нее не действуют электрические силы отталкивания. По-этому нейтрон легко может проникнуть в атомное ядро. Нейтронами бомбардировали ядра атомов отдельных эле-ментов. Когда же очередь до-шла до урана, обнаружилось, что этот тяжелый элемент ве-дет себя иначе, чем другие. Кстати, следует напомнить, что встречающийся в природе уран содержит три изотопа: уран-238 (238U), уран-235 (235U) и уран-234 (234U), при-чем цифра означает массовое число.

Атомное ядро урана-235 оказалось значительно менее устойчивым, чем ядра других элементов и изотопов. Под действием одного нейтрона наступает деление (расщеп-ление) урана, его ядро распадается па два приблизи-тельно одинаковых осколка, например на ядра крипто-на и бария. Эти осколки с огромными скоростями раз-летаются в разных направлениях.

Но главное в этом процессе, что при распаде одного ядра урана возникают два-три новых свободных ней-трона. Причина заключается в том, что тяжелое ядро урана содержит больше нейтронов, чем их требуется для образования двух меньших атомных ядер. “Строи-тельного материала” слишком много, и атомное ядро должно от него избавиться.

Каждый из новых нейтронов может сделать то же, что сделал первый, когда расщепил одно ядро. В самом деле, выгодная калькуляция: вместо одного нейтрона получаем два-три с такой же способностью расщепить следующие два-три ядра урана-235. И так продолжает-ся дальше: происходит цепная реакция, и, если ею не управлять, она приобретает лавинный характер и за-канчивается мощнейшим взрывом - взрывом атомной бомбы. Научившись регулировать этот процесс, люди получили возможность практически непрерывно получать энергию из атомных ядер урана. Управление этим процессом осуществляют в ядерных реакторах.

Ядерный реактор - устройство, в котором протекает управляемая цепная реакция. При этом распад атом-ных ядер служит регулируемым источником и тепла, и нейтронов.

Первый проект ядерного реактора разработал в 1939 г. французский ученый Фредерик Жолио-Кюри. Но вскоре Францию оккупировали фашисты, и проект не был реализован.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.