Рефераты. Энергетический феномен вакуума

Мы провели такой эксперимент: подключали стандартные 60Вт лампы накаливания ко вторичной обмотке повышающего трансформатора. На холостом ходу трансформатор выдавал напряжение около 300В. В эксперименте было использовано 20 ламп накаливания. Оказывается, чаще всего лампы накаливания перегорают в двух и более местах, причем перегорает не только спираль, но и токоподводящие провода. При этом после первого разрыва цепи лампа продолжает светить более ярко, пока не перегорит другой участок. Одна лампа в нашем эксперименте перегорела в четырех местах, а именно, в двух местах перегорела спираль, и перегорели оба электрода! Результаты эксперимента представлены в таблице 1.

Таблица 1.

Кол-во ламп, использованных в эксперименте

Кол-во ламп, перегоревших в одном месте

Кол-во ламп, перегоревших в двух местах

Кол-во ламп, перегоревших в трех местах

Кол-во ламп, перегоревших в четырех местах

Кол-во ламп, перегоревших в пяти местах

20

8

8

3

1

0

3.11. Эксперименты по беспроводной передаче энергии.

Приводим сведения о проведенных нами экспериментах по осуществлению беспроводной (без заземления) передачи электроэнергии.

Рис. 10. Кадры видеосъемки экспериментов по беспроводной передаче энергии.

В наших экспериментах источником энергии служил комплекс, состоящий из блока питания Б5-47, генератора и трансформатора, он хорошо виден на кадрах 10а и 10в, приемником - электродвигатель постоянного тока ИДР-6. Электродвигатель установлен на электропроводной платформе, которая, в свою очередь, установлена на корпусе из изоляционного материала. Внутри этого корпуса находится электронный узел. Схема приемника в этом случае несколько отличается от использованной в предыдущих экспериментах, описанных в разделе 3.9. Внутренняя часть приемника показана на фотографиях 10г и 10д. На кадре 10д окружностью выделен непосредственно электронный узел приемника.

В экспериментах наблюдалось вращение ротора электродвигателя в руках человека. Двигатель был установлен на платформе, на которой отсутствовали источники питания. Наблюдалось увеличение коэффициента передачи с уменьшением расстояния (рис.10в). По мере уменьшения расстояния частота вращения вала электродвигателя увеличивалась. На (рис.10б) показан кадр видеосъемки, где частота вращения вала резко возрастала в том случае, если электродвигатель находился в руках двух человек.

Проблема беспроводной передачи энергии остается актуальной. Над ней продолжают работать ученые разных стран.

3.12. Наши эксперименты, демонстрирующие свечение лампы накаливания в руке.

Известно, что Никола Тесла демонстрировал светящуюся в руке лампу. Нам не удалось найти описания этого эксперимента, поэтому мы разработали свою схему эксперимента. Ниже представлены результаты проведенных нами экспериментов, демонстрирующие свечение в руке лампы накаливания. На рис.11 видно, что лампа 220В, 25Вт светится в руке оператора, будучи подключенной одним контактом к одному проводу. На фотографиях (рис.11) виден проводник от генератора, подводящий энергию к одному контакту цоколя лампы. Эти эксперименты - продолжение серии опытов с однопроводной передачей энергии. На фотографии 11а показан фрагмент подготовки к эксперименту. На фотографиях 11б, 11в запечатлены фрагменты эксперимента.

Рис. 11. Фотографии экспериментов, демонстрирующие свечение лампы накаливания в руке.

3.13. Эксперименты, демонстрирующие поведение электропроводных жидкостей в магнитном поле [20].

Нами проведены эксперименты, показавшие, что при пропускании электрического тока через электропроводную жидкость, находящуюся в магнитном поле, жидкость приходит в вихревое движение. Этот физический эффект, по своему внешнему проявлению имеет большую аналогию с вращением Земли, а также с некоторыми другими проявлениями в ее недрах и на поверхности [20]. Эффект вихревого движения и температурный эффекты, наблюдаемые в лабораторных условиях, по нашему мнению, могут быть распространены на большое количество природных явлений.

Рис. 12. Вихревое движение расплавленного олова в магнитном поле [20].

Описание эффекта вихревого движения среды проведем на примере расплавленного олова. Кювета с оловом помещается в магнитное поле, вектор магнитной индукции которого направлен вертикально (рис.12а). На рисунке изображены: 1 - сосуд, 2 - расплавленный металл, 3 - спиральная катушка, 4 - металлическое кольцо, 5 - электрод, "S" - южный магнитный полюс, "N" - северный магнитный полюс. Четыре прямые стрелки на рисунке показывают положение стрелки компаса при проведении эксперимента. В центральной части сосуда в расплавленный металл опущен электрод. Второй электрод выполнен кольцевым. Он установлен по периметру сосуда и опущен в жидкость. При протекании тока через электропроводную жидкость, последняя приходит в вихревое движение, наблюдающееся в зоне между центральным и периферийным электродами с центром вихря у центрального электрода. Направление движения расплавленного металла показано стрелкой. Эффект хорошо виден на кадрах видеосъемки эксперимента (рис.12б и 12в). Частота вращения максимальна в центре и уменьшается к периферии. Вихревое движение расплавленного металла появляется даже при незначительном токе. Начиная с тока в несколько ампер, оно уверенно наблюдается визуально. При дальнейшем увеличении тока интенсивность вихревого движения резко возрастает, что приводит к образованию глубокой воронки в центре сосуда (рис.12б). При изменении направления магнитного поля или при изменении полярности приложенного напряжения направление вихревого движения меняется на противоположное. Мы считаем, что подобный эффект проявляется в Природе и приводит к образованию вихрей, торнадо, циклонов [20].

Вихревое движение жидкости в магнитном поле сопровождается температурным эффектом. Сущность его состоит в том, что в вихревой среде возникает градиент температуры. Повышение температуры среды у одного электрода сопровождается понижением температуры среды у другого электрода. Описание эффекта приведем на примере электропроводной жидкости. Кювету с электропроводной жидкостью помещают в магнитное поле, вектор индукции которого направлен вертикально. В центральной части кюветы в жидкость опущен электрод. Второй периферийный электрод выполнен кольцевым и установлен по периметру кюветы (рис.13а). При протекании тока наблюдается вихревое движение жидкости, которое сопровождается повышением температуры среды у одного электрода и понижением температуры среды у другого электрода. Это проявляется в эксперименте как образование твердой фазы металла у одного из электродов (рис.13б и 13в). При изменении условий эксперимента твердая фаза образуется не в центральной области, а у периферийного электрода.

Рис. 13. Температурный эффект, сопровождающий вихревое движение в магнитном поле [20].

По нашему мнению, этот температурный эффект проявляет себя в Природе. Возможно, он вносит свой вклад в возникновение низких температур в полярных зонах Земли.

Появление градиента температуры наблюдалось и в эксперименте, схема которого показана на рисунке 14а. Кадры видеосъемки 14б и 14в демонстрируют образование двух разнонаправленных вихрей. Увидеть видеосъемки экспериментов с вихревым движением расплавленного олова можно на сайте http://www.unitron.com.ua

Рис. 14. Двойной вихрь [20].

Односторонний температурный эффект наблюдается и в эффекте, открытом французским инженером-металлургом Ж. Ранком. В турбулентном смерче самопроизвольно возникает мощный ток тепла от оси к периферии: ядро потока всегда холоднее периферии. Вихревая труба Ранка (рис.15) - это тот же циклон, но реконструированный для получения максимального количества холода в осевой части вихревого потока и, соответственно, тепла - в периферийной.

Разность температур между самыми горячими и самыми холодными слоями в вихревой трубе может быть значительной. Эти слои в поле центробежных сил сосуществуют на расстоянии нескольких миллиметров друг от друга [21].

Рис. 15. Вихревая труба [21].

Следует отметить, что в отличие от температурного эффекта, наблюдаемого в наших экспериментах, в эффекте Ранка тепло всегда перетекает от оси вихря к периферии, независимо от направления вихря. В наших экспериментах наблюдалось охлаждение олова при одних условиях в центре, при других - на периферии.

3.14. Новые физические эффекты в плазме.

Мы провели серию экспериментов на установке "Унитрон", в которых выявлено необычное поведение плазмы [10]. В экспериментах мы наблюдали одновременно два плазменных образования, симметрично расположенных относительно плазмообразующего канала.

Ниже приведены кадры из видеосъемок экспериментов.

Рис. 16. Кадры видеосъемок экспериментов с плазмой.

На кадрах видны плазменные сгустки в различных фазах их существования. На рис.16а и рис.16б показаны начальные фазы существования плазмы в виде огненных шаров и веретен.

На некотором расстоянии от плазмообразующего канала, вне зоны генерации плазмы, мы помещали мишени. В качестве мишеней выступали листы бумаги, картона и металлов. На третьем кадре (рис.16в) видно фрактальное плазменное образование свободно двигающееся в воздухе. Кроме того, на этом кадре видно некое образование, имеющее красноватый оттенок, зависшее у края стола, на котором расположена установка. На четвертом кадре (рис.16г) видны сразу оба конусных плазменных образования. В этом эксперименте мишени не устанавливались. Рисунок 16д изображает финальную стадию существования плазмы. На нем видны разлетающиеся расплавленные фрагменты мишени.

На фотографии (рис.17) показаны мишени после воздействия плазмы.

Рис.17. Мишени после воздействия плазмы.

В ходе экспериментов мы наблюдали взрывообразное плавление и возгонку металлов, даже таких тугоплавких, как вольфрам. Это видно по отверстиям, образовавшимся в металлических листах. На рис.17 сверху и справа расположены мишени, представляющие собой комплекс из алюминиевой фольги и бумаги. В одних экспериментах мы устанавливали эти комплексы бумажной стороной к зоне генерации плазмы. Мишень в этом случае оставалась не поврежденной. В других экспериментах мы устанавливали комплексы фольгой к зоне генерации. В результате, фольга на некоторой площади испарялась, в то время как расположенный за ней слой бумаги оставался не поврежденным. Результат одного из таких экспериментов показан крупным планом на рис. 18а. При установке в качестве мишени полоски папиросной бумаги без каких-либо покрытий, последняя не воспламенялась. Мишени из бумаги оставались целыми, они не загорались, хотя находились внутри огненного плазменного шара. В ходе экспериментов выяснилось, что получаемая на нашей установке плазма воздействует только на проводники. Диэлектрики же испытывают сильное механическое воздействие, похожее на электростатическое отталкивание. Эти факты свидетельствуют о том, что фактором, действующим на мишень, является не температура плазмы.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.