Рефераты. Элементы спектрального анализа

(4.1)

Фотоионизация, например

(5.1)

Льюис и Каша [54] предложили два механизма этих реак-ций: превращение может осуществляться либо в результате поглощения фотона молекулой в основном состоянии

(6.1)

либо в результате поглощения фотона триплетной молекулой
. (7.1)

В жесткой среде при низкой температуре можно накопить зна-чительные концентрации триплетных молекул, и поглощение ими фотонов является достаточно вероятным процессом. В брутто реакции [67] последовательно поглощаются два отдельных фо-тона и при малых интенсивностях возбуждающего света скорость такого двухфотонного процесса пропорциональна квадрату интенсивности.

Механизм реакции двухфотонной сенсибилизированной реакции разрыва связи молекулы ЛВ растворителя может быть записан следующим образом[55]:

или

,

,

,

где X и Y--молекулы растворенного вещества. Различные экс-периментальные данные (например, зависимость скорости обра-зования радикалов от концентрации растворенного вещества или интенсивности возбуждающего света) находятся в хорошем со-гласии с выводом, вытекающим из приведенной кинетический схемы.

Установлено, что длины волн, эффективные для вторичного возбуждения (т.е. ) и приводящие к разложению рас-творителя, совпадают с длинами волн полос триплет-триплетного поглощения растворенного вещества (X или Y). Например, в случае сенсибилизатора -- нафталина -- полоса поглощения при 2600К оказывается эффективной в отношении раз-ложения этанола и диэтилового эфира с образованием этильного радикала [56-59]. С другой стороны, переход при 4000 ? эффективен относительно разрыва связи в метилиодиие или трет-бутаноле и образования метильного радикала [60]. Иными словами, эффективность второго кванта hv2, по-види-мому, определяется энергией, требуемой для разрыва данной связи в молекуле растворителя, и спектром триплет-триплетного поглощения растворенного вещества. Теренин и сотр. [60] при-менили эту селективность, исследуя зависимость скорости обра-зования радикалов от концентрации субстрата в системе нафта-лин (сенсибилизатор) + метилиодид (субстрат) в стеклообраз-ном этанольном растворе.. Это исследование, вероятно, также подтверждает постулированный выше процесс триплет-триплетного переноса энергии.

Появление сигналов ЭПР радикала обычно связано с неболь-шим уменьшением интенсивности сигнала ЭПР состояния и сильным увеличением интенсивности фосфоресценции [61]. Эти явления и выводы, вытекающие из них, можно сумми-ровать следующим образом[55]:

В процессе фотолиза не происходит разрушения молекул
сенсибилизатора. Интенсивности сигнала ЭПР состояния и
интенсивности испускания более или менее полно вос-станавливаются после расплавления стекла и повторного его
замораживания.

Спектр ЭПР состояния позволяет заключить, что время
жизни состояния при протекании процесса фотолиза не меняется. Однако увеличенная интенсивность испускания характеризуется резким сокращением времени жизни. Для слу-чая, когда в качестве сенсибилизатора использовался нафталин, наблюдалось уменьшение до значения, меньшего чем 10 мс, увеличение в 30 раз и уменьшение интенсивности сигнала ЭПР триплетных молекул до 70% [61].

3. Очень вероятно, что образуется некий комплекс триплетной молекулы и радикала. Константа скорости излучательного перехода для «состояния » такого комплекса значительно уве-личивается по сравнению с таковой для молекулы, возможно, по тому же механизму, который имеет место в комплексах арома-тических молекул с О2 или N0. Поэтому происходит уве-личение и уменьшение . С другой стороны, столь мало, что концентрация «состояний » комплекса быстро па-дает. Таким образом, вклад комплекса в сигнал ЭПР незначите-лен. Однако образование комплекса приводит к уменьшению концентрации триплетных молекул, не участвующих в образова-нии комплекса. Поскольку спектр ЭПР обусловлен поглощением триплетных молекул, не связанных в комплекс, из этого следует, что должна уменьшаться, тогда как сильно умень-шаться не должно. Нагревание до плавления образца приводит к исчезновению радикалов и более или менее полному восста-новлению первоначальной фотоактивности.

§3. Двухквантовые фотопроцессы с участием триплетных молекул.

Как было отмечено выше Льюис и Липкин[54] показали, что в жестких средах могут протекать три типа первичных фотохимических реакций:

Фотодиссоциация, например:

Фотоокисление, например

(8.1)

Фотоионизация, например

(9.1)

Льюис и Каша [55] предложили два механизма этих реак-ций: превращение может осуществляться либо в результате поглощения фотона молекулой в основном состоянии

(10.1)

либо в результате поглощения фотона триплетной молекулой
. (11.1)

В жесткой среде при низкой температуре можно накопить зна-чительные концентрации триплетных молекул, и поглощение ими фотонов является достаточно вероятным процессом. В брутто реакции [62] последовательно поглощаются два отдельных фо-тона и при малых интенсивностях возбуждающего света скорость такого двухфотонного процесса пропорциональна квадрату интенсивности.

Одними из первых исследователей рекомбинационного испу-скания были Дебай и Эдвардс [63]. Они облучали при 77 К твердые растворы легко окисляющихся веществ (фенол, толуидин) и зарегистрировали испускание с чрезвычайно высоким временем жизни (более 100 с). Его затухание было неэкспоненциальным, и авторы предположили, что имеет место последовательность ря-да стадий: фотоионизация [по терминологии Льюиса и Липкина -- фотоокисление, см. уравнение (8.1)], диффузия захваченных матрицей электронов к ионизованным молекулам и их рекомби-нация, в результате которой получается возбужденное состояние:

(12.1)

, (13.1)

(14.1)

Линшиц, Берри и Швейцер [52] исследовали спектры погло-щения при низкой температуре стеклообразных растворов лития в аминах. Они обнаружили интенсивный пик при 600 нм, а также более слабое поглощение, простирающееся в инфракрасную область. При освещении полоса 600 нм ослаблялась, а длинноволновый фон усиливался. Поглощение в области 600 нм авторы приписали сильно сольватированным электронам, а длинновол-новое поглощение -- слабо сольватированным электронам. За-тем они облучили стеклообразные растворы легко окисляемых органических соединений и идентифицировали в спектрах погло-щения как полосы сольватированных электронов, так и полосы радикалов или ион-радикалов. Рекомбинация при температуре жидкого азота была очень медленной, но при нагревании облу-ченного раствора происходило испускание люминесценции и ослабление полос поглощения и радикалов и сольватированных электронов. Эти результаты доказали, что люминесценция дей-ствительно обусловлена рекомбинацией ионов и электронов [52] ((12.1) и (13.1)). Спектр люминесценции оказался иден-тичным спектру фосфоресценции (т. е. испускание было рекомбинационной фосфоресценцией), переходов типа обнару-жено не было, но причиной этого нельзя считать большую скорость интеркомбинационной конверсии, поскольку при фотовозбуждении возникала интенсивная быстрая флуоресценция. Подобные же результаты получили Альбрехт и сотр. [64], которые облучали инфракрасным светом фотоионизированный твердый раствор тетраметил-n-фенилендиамина и зарегистриро-вали при этом как рекомбинационную фосфоресценцию, так и рекомбинационную замедленную флуоресценцию. Отношение интенсивностей этих видов испускания оказалось значительно боль-ше отношения интенсивностей обычной фосфоресценции и бы-строй флуоресценции того же самого образца, что указывало на прямое заселение триплетного состояния в рекомбинационном процессе, а именно

(15.1)

Альтернативный процесс, т. е. заселение электронно-возбужденного синглетного состояния

(16.1)

был постулирован Лимом и сотр. [52], которые облучали при 77 К растворы акрифлавина и родственных красителей в эфир-пентан-этанольном стекле и обнаружили замедленную флуоресценцию, продолжавшуюся несколько секунд. Кроме того, они зарегистрировали по поглощению промежуточное вещество, идентифицированное как положительный ион-радикал -- продукт фотоионизации. За исключением ранней стадии, замедленная флуоресценция затухала экспоненциально со скоростью, равной скорости исчезновения ион-радикалов. Интегральная интенсив-ность замедленной флуоресценции и начальная концентрация ион-радикалов оказались пропорциональными интенсивности возбуждающего света, и авторы сделали вывод об однофотонном механизме возбуждения. Эффективность замедленной флуоресценции увеличивалась при уменьшении длины волны возбуждающего света. Эти результаты были интерпретированы в рам-ках модели, подобной предложенной Альбрехтом и сотр. для люминесценции тетраметил-n-фенилендиамина, хотя позднее Альбрехт и Кадоган [64] заново рассмотрели свои результаты уже исходя из двухфотонного механизма.

Вляние длины волны возбуждающего света на замедленную флуоресценцию обнаружили также Стивенс и Уокер [52], иссле-довавшие при 77 К перилен в жидком парафине. В их опытах спектр возбуждения замедленной флуоресценции приблизитель-но совпадал со спектром триплет-триплетного поглощения перилена, и они приняли двухфотонный механизм, включающий фотоионизацию триплетного состояния и рекомбинации, в ре-зультате которой заселяются и триплетное и возбужденное синглетное состояния:

(17.1)

(18.1)

(19.1)

Впоследствии были высказаны сомнения в правильности этой интерпретации из-за возможного влияния фосфоресценции кювет или примесей в растворе .

Портер и сотр. [52] исследовали двухфотонные фотохими-ческие процессы, индуцированные поглощением света триплетными состояниями в твердых средах при температуре 77 К. Для растворов ароматических соединений в алифатических углеводородах, они установили два типа процессов: а) ионизация растворенного вещества; б) сенсибилизированная диссоциация растворителя на атомы водорода и свободные радикалы и отрыв последними атомов водорода от растворителя или растворенного вещества, в результате чего получаются радикалы растворенного вещества. Под действием инфракрасного света или при слабом нагревании наблюдались флуоресценция и фосфоресценция, возникавшие в результате рекомбинации ионов и электронов. Отношение интенсивностей фосфоресценции и флуоресценции было выше, чем при обычном оптическом возбуждении, и в этом отношении резуль-таты были идентичны результатам Альбрехта и сотр. [64], впо-следствии пересмотренным с точки зрения двухфотонного меха-низма.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.