Рефераты. Элементы спектрального анализа

Такое широкое применение стало возможным благодаря разработке методов качественного и количественного [7, 6] анализов сложных молекул по квазилинейчатым спектрам их люминесценции.

Очевидно, первое количественное применение (полуколичественное) ,используя квазилинейную флуоресцентную эмиссию успешно было выполнено Богомоловым и др.[7] , когда был достигнут полуколичественный метод анализа 3,4 бензпирена (в н-гексане при 77 К),базировавшийся на числе линий, присутствующих в спектре, при концентрации 21 линия были видимы, несмотря на nо, что только 4 линии наблюдались при концентрации. Ильина и Персонов предложили метод для определения перилена в ароматический фракции масел и битумах[36]. Определение было выполнено по оценке содержания перилена в образцах, сравнивая с флуоресцентным спектром искусственных смесей, сделанных из подобного масла о прибавленной хорошо известной концентрацией перилена.

Муель и Лакрос[50], работая в лаборатории Пастера ( Институт Радия, Париж), описали первые количественные методы анализа для 3,4 бензпирена (при 83 К) в н-октане, когда было предложено использование методики стандартной примеси, обычно используемой в пламени фотометрии. Используя этот метод, Муель и Лакрос получили точность ±10 % и предел обнаружения для концентрации . Метод стандартной примеси был использован, чтобы избежать изменений, обусловленных самопоглощением, эффект для чужих ионов или молекул и изменение интенсивности обусловлены изменением в скорости замораживания, В этой прекрасной работе также было исследовано практическое применение.

Эта работа вскоре была завершена Дикуном [34], который в 1961 г изобрёл метод для определения 3,4 бензпирена при 77 К, используя 1,12 бензперилен как внутренний стандарт и н-гексан как раствор. Пропорциональность между линиями наблюдалась только при низких концентрациях ( меньше чем или?), и относительная ошибка, для 15 анализов была ± 8%. Этот метод был сравнён со спектрометрическим методом поглощения и заметное улучшение в чувствительности ( 100 раз ) наблюдалось с новым методом Автор также заметил, что наличие 1,12 бензперилена , который обычно присутствует в такой же хромотографической фракции не мешает, как обычно случается в методе поглощения.

Персонов[38] независимо изобрёл подобный метод внутреннего стандарта в н-октане при 77 К. Антрацен, пирен, перилен, 1,12 бензперилен и коронен были опробованы как внутренние стандарты. перилен и коронен дали фактически отчётливую флуоресценцию. Перилен, однако, имеет большое число интенсивных поглощают групп, которые в результате искажают соответствующую часть флуоресцентного спектра 3,4 бензпирена, коронен был попользован, как внутренний стандарт Персонов также наблюдал, что отношение интенсивностей () было чрезвычайно чувствительно к изменениям в скорости замораживания также, если образцы имели флуоресценцию тушителей, которая видоизменяла интенсивности 3,4 бензпирена и коронена в различные стороны, было замечено что это приводило к изменениям в отношении интенсивности для их линий. Используя метод внутреннего стандарта, Прохорова и Знаменский[39] обнаружили концентрацию в парафине. Успехи и трудности, связанные с аналитическим применением эффекта Шпольского были описаны в 1962 году Шпольским и Персоновым[40].

Эйчхоф и Кёхлер[49] исследовали люминесцентные характеристики антрацена, 3-метилколантрацена и 3,4 бензпирена при 79 К в н-гептане; в последнем из них была достигнута зависимость интен-сивности от концентрации. Относительная ошибка была 6,4 % при концентрации , предел обнаружения был .

Персонов и Теплицкая[41], используя метод абсолютных интенсивностей и метод примесей определили 3,4 бензпирен, перилен и 1,12 бензперилен в органических материалах из минералов и горных пород. Используя настоящий образец, сравнение было сделано между прямым методом и методом стандартных примесей и были получены очень похожие результаты для перилена и 1,12 бензперилена .

Персонов и Теплицкая ,однако, поднимают вопрос о том, что если образец известен не как тушитель флуоресценции и точные требования не налагаются на величину ошибки, анализ может быть в таких случаях проведен, используя метод сравнения со стандар-тным раствором правильнее, чем со средним числом большинства точных методов стандартных примесей[41].

Ягер и Лугрова[42] после исследования синтетических смесей, также показали, что количество 3,4 бензпирена, найденное после анализов, было всегда меньше, чем количество прибавленное ( -7 -10 % ). Авторы объясняют этот эффект ,как причину интерференции других компонентов, присутствующих в смеси. Также было найдено, что высоконцентрационная граница для анализа 3,4 бензпирена в конечном растворе была , будучи оптимальной при типичном значении .

Данильцева и Хесина [43] установили метод для анализа, 7,12-демитилбензоантрацена в н-октане при 77 К. Предложенный метод был комбинацией двух методов стандартной примеси и внутреннего стандарта (комбинированный метод): 3,4,5,6,7-трибензопирен (ТВР) был выбран внутренним стандартом, так как это соединение имеет отчётливый квазилинейный флуоресцентный спектр в н-октане и, следовательно, не искажает аналитику квазилинейного испускания.

Дикун и др [34] сравнили комбинированный метод, описанный выше с методом внутреннего стандарта и методом примесей для анализа 3,4 бензпирена в н-октане при 77 К. 1,12 бензперилен, был использован как стандарт для методов внутреннего и комбинированного. Это сравнение показало, что большая разница в результатах была получена, когда был исполь-зован метод примесей (+ 29 %),и похожие результаты ( 8 - 10 %) были получены, когда был использован или метод внутреннего стандарта, или комбинированный метод.

Дикун со своими сотрудниками, однако, поднимают вопрос о том, что когда анализируются реальные образцы, существует возможность, что они включают другие вещества, которые могут тушить флуоресценцию излучаемых соединения. Согласно Персонову и Теплицкой[41] такие соединения хотя они не представляют реальной проблемы ни в ком-бинированном методе ни в методе примесей - могут мешать в методе внутреннего стандарта. Количественные анализы для 3,4 бензпирена, сделанные Дикуном и его сотрудниками, в различных образцах, используя внутренний стандарт или комбинированный метод, показывают, что ре-зультаты представляют расхождения, но не было возможности прийти к определённому выводу, что примеси, которые присутствуют в образцах были ответственны за различия[34]. Эти сотрудники сделали вывод, что опасность тушения веществами, которая появляется в методе внутреннего стандарта сильно переоценивается Персоновым и Теплицкой.

Из всего вышесказанного ясно, что методы спектрального анализа нашли самое широкое применение и в медицине и в нефтеперерабатывающей промышленности и в фундаментальных исследованиях. Поэтому важную роль при использовании спектров органических соединений играет их достоверность и точность, а это не всегда возможно в силу многих причин.

§2. Факторы, влияющие на точность спектрального анализа.

Резкие квазилинейчатые спектры люминесценции (и поглоще-ния) обладают рядом особенностей, которые позволяют эффектив-но использовать их в аналитических целях. Эти особенности квазилинейчатых спектров лю-минесценции сделали их наиболее тонким и точным современным аналитическим методом и указывают на целесообразность и перспективность применения его для спектрохимического анализа многокомпонентных природных смесей[6,7].

1. Специфичность

Тонкость, многочисленность и индивидуальное расположение полос в спектре люминесценции каждого углеводорода позволяют осуществить достоверную идентификацию.

2. Селективность

Позволяет обнаруживать индивидуальные соединения в слож-ных смесях, когда доля вещества так мала, что спектр флуорес-ценции при обыкновенной температуре дает лишь слабый намек или вообще не дает указаний на его присутствие.

3. Чувствительность

Чувствительность обнаружения индивидуального углеводоро-да в «чистых» растворах н-парафинов достигает [7]. Т. е. превосходит на 2--3 порядка чувствительность обыч-ного люминесцентно-спектрального анализа при комнатной тем-пературе и намного превосходит чувствительность методов коле-бательных спектров.

С помощью квазилинейчатых спектров возможно определение отдельных индивидуальных органических соединений (одновременно 4--5 веществ) в многокомпонентных смесях даже тогда, когда они входят в смесь в виде следов и анализ другими методами не-возможен.

Анализ имеющихся экспериментальных данных показывает, что харак-тер квазилинейчатого спектра зависит от условий образования смешан-ного кристалла (растворитель -- вещество). Оптические свойства обра-зовавшегося поликристаллического раствора определяются свойствами растворителя, условиями кристаллизации раствора, наличием люминесцирующей примеси, характером взаимодействия между ними и содер-жанием в растворе других компонент.

Растворители. Для получения дискретных спектров флуоресценции и поглощения ароматических углеводородов удобными растворителями оказались нормальные парафины, хотя в ряде исследований была пока-зана пригодность для этих целей других жидкостей, кристаллизующихся при замораживании: Для каждого соединения удается подобрать один или группу н-парафинов, в которых условия для возникновения квази-линейчатых спектров наиболее благоприятны. В частности, для соедине-ний с линейной структурой (полиацены, полифенилы, дифенилполиены и т.д.) наиболее резкие спектры наблюдаются в тех случаях, когда ли-нейные размеры молекул растворителя близки к линейным размерам молекул примеси. Меняя растворитель, удается выделить квазилиней-чатые спектры различных компонент смеси.

Концентрации. Выбор оптимальных концентраций исследуемого вещества в «чистом» растворителе диктуется следующими соображени-ями. Как отмечалось ранее в ряде работ [6,7], квазилинейчатый характер имеют спектры молекул, находящихся в замороженном раст-воре в состоянии так называемого «ориентированного газа», т. е. для этого необходимы небольшие концентрации примесных молекул. Уве-личение концентрации приводит к возникновению взаимодействия меж-ду молекулами примеси, к миграции энергии между раз-личными компонентами сложной смеси и, возможно, к образованию аг-регатов примесных молекул. Это в свою очередь способствует «размы-ванию» спектра и появлению полос в более длинноволновой области.

Существуют данные о влиянии примеси и на характер кристалличе-ской структуры матрицы, возникающей при замораживании. Под влия-нием высоких концентраций растворенного вещества в некоторых уча-стках происходит перестройка матрицы -- растворителя, что приводит к изменению характера квазилинейчатого спектра растворенных молекул.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.