Рефераты. Элементы спектрального анализа

Многофотонная флуоресцентная микроскопия используется при диагностики объемных микроструктур с субмикронным пространственным разрешением на основе многофотонной флуоресценции. Основные области применения: считывание информации с трехмерного носителя, мониторинг объемной лазерной модификации материалов и диагностика биотканей с субклеточным разрешением.

Сулимов В.Б., Соколов В.О., Дианов Е.М. провели исследования воздействия УФ- лазерного излучения азотного лазера на функциональную активность иммунокомпетентных клеток методом хемилюминесценции цельной крови. Исследования показали что облучение в режиме жесткой фокусировки излучения приводит к выраженной модуляции функциональной активности иммунокомпетентных клеток, которая выражается в зависимости эффекта действия от исходной активности клеток и в целом носит нормализующий характер. Проведенные исследования показали, что основной механизм следует искать не в фотохимических изменениях, а в фотофизических процессах происходящих в системе NADPH-(Субстрат) отвечающей за реакцию фазоцитоза. Вероятными фотофизическими процессами могут выступать двухквантовая ионизация NADPH, фотоабляция фермент-субстратного комплекса.

Мешалкин Ю.П. исследует сечение двухфотонного поглощения ароматических аминокислот и белков. В статье приводятся результаты по эффективности поглощения света при переходе от одноквантового возбуждения к двухквантовому на конкретных органических системах. При двухквантовом механизме поглощение света резко усиливается и это служит хорошим катализатором для многих биопроцессов.

Весьма интересна с точки зрения практического применения лазера, и возбуждаемого с помощью него люминесценция в генетических структурах

,проходящая также по двухквантовому механизму, работа Агальтсова А.М., Гаряева П.П., Горелик В.С., Щеглова В.А.

Как говорилось выше очень много исследований по двухквантовым фотопроцессам связаны с лазерной техникой.

Кузнецова Р.Т., Копылова Т.Н., Дегтяренко К.М., Сергеев А.К., Майер Г.В., Афанасьев Н.Б. в своих статьях исследуют фотохимические и фотофизические процессы в лазерно-активных средах диапазона 400 нм. Причем многоие из из них рассматриваются как двухквантовые(фотоионизация ароматических углелеводородных соединений с выбросим электрона в среду). Показано что при определённых условиях процессы могут менять свой характер, переходя от двухквантового к одноквантовому и наоборот.

Лохмана В.Н., Макарова Г.Н., Рябова Е.А. показана возможность разделения изотопов углерода методом ИК многофотонной диссоциации молекул CF2HClс разделительным реактором в резонаторе лазера как это влияет на мощностно- временные характеристики газового лазера.

Босый О.Н., Ефимов О.М. вывели и исследовали закономерности и механизм эффекта накопления в условиях многофотонной генерации центров окраски.

Также рассматривалась работа Акманова А.Г., Жданова Б.В., Шакирова Б.Г. , где они исследовали двухфотонное поглощение и оптическое ограничение ИК излучения в антимониде галлия n-типа, и связанные с этим явлением преимущества и возникающие сложности в полупроводниковых лазерах.

Глава I.

§1. Эффект Шпольского. Методы количественного анализа.

В настоящее время огромное значение в физико-химических исследованиях приобрели спектральные методы. Важное практическое значение имеют разнообразные спектрально-аналитические методы, к числу ко-торых относится молекулярный спектральный анализ.

Широкие возможности для развития молекулярного спектрального анализа появились благодаря открытию в 1952 г. профессором Э. В. Шпольским с сотрудниками эффекта тонкой квазилинейчатой структуры электронных спектров многоатомных молекул [6]. Такие спектры получили название квазилинейчатых, а эффект расщепления молекулярных спектральных максимумов в узкие квазилинии--«эффек-та Шпольского».

Смысл эффекта, открытого Э. В. Шпольским, в том, что иссле-дуемые молекулы, внедряясь в кристаллическую решетку соответ-ствующим образом подобранной матрицы, при низкой температуре находятся в состоянии, к которому применима модель «ориенти-рованного газа». В этом состоянии молекулы лишены возможно-сти свободно вращаться, находятся на больших расстояниях друг от друга, не могут взаимодействовать между собой, а из-за нейт-ральности растворителя и с молекулами последнего. Все это сни-мает сильные взаимодействия, вызывавшие размывание спектра, И благодаря этому молекула обнаруживает свои электронные и колебательные состояния [7, 8].

Такой эффект достигается растворением в одном из специально подобранных растворителей и последующим замораживанием при температуре кипения азота (t = --196°С) или более низкой.

Растворитель должен при замерзании легко кристаллизоваться,
быть нейтральным по отношению к внедренным молекулами оптически прозрачным в той области, где поглощают и излучают
внедренные в него молекулы. Этим качествам очень хорошо удовлетворяет класс нормальных парафиновых углеводородов от н-пентана до н-декана и выше [7, 8].

В последнее время диапазон растворителей, в которых соблю-даются описанные выше условия, значительно расширился, вклю-чив в себя и высшие спирты и в некоторых случаях даже такие соединения, как дибензиламиноэтанол [9]. Кристаллическая решетка, в которую внедряются исследуемые молекулы, является для них жесткой матрицей, куда молекулы помещаются, по-видимому, без существенной деформации, но и без излишней свободы [8, 11]. При этом было выяснено, что если для соединений линейной структуры (нафталин, антрацен и т. д.) необходима близость линейных размеров у молекул раст-ворителя и примеси [12--14], то для более сложных молекул такое соответствие не является необходимым условием возникновения квазилинейчатого спектра [15, 16]. Решающая в ряде случаев роль геометрии (аналогии размеров и формы примесных молекул и молекул растворителя) наталки-вает авторов [10, 13] на мысль, что характер внедрения примес-ной молекулы в кристаллическую решетку растворителя похож на химические системы, называемые соединениями включения [18], где примесные молекулы могут находиться или в полости отдель-ной молекулы растворителя (но для этого требуются относительно большие молекулы последнего, молекулярный вес которых боль-ше 1000) или в полости, образованной в пространственной ре-шетке растворителя в результате совместного расположения многих маленьких молекул [10,11, 14]. Такие соединения образуют однородную систему, где молекулы объединены не химическими, а ван-дер-ваальсовыми силами связи. В первую очередь здесь важна чисто пространственная конфигурация компонентов соеди-нения.

Способность растворителя при замерзании кристаллизоваться имеет большое значение для получения таких дискретных спект-ров, так как в растворителях, дающих при замерзании стеклообразную массу (например, в спиртах или их смесях), эффект столь резкого сужения спектральных полос не наблюдался [19].

При соблюдении всех этих условий удалось получить спектры люминесценции и поглощения, где вместо обычных диффузных по-лос шириной ~ и более наблюдается большое число резких и узких (~) линий [20,21]. Такие спектры по-лучили название квазилинейчатых.

Рядом работ было доказано [22--24, 25], что эти спектры при-надлежат молекулам растворенного вещества, а не каким-нибудь кристаллическим агрегатам.

Так как примесная молекула находится в кристаллической ре-шетке растворителя, то последняя, очевидно, должна оказывать свое влияние на примесные молекулы. В квазилинейчатых спект-рах это проявляется в сдвиге всего спектра на по сравнению со спектром свободных молекул газа. «Сжатие» моле-кулы в кристаллической решетке растворителя должно привести к тому, что вместе с исчезновением трансляционных (связанных с взаимодействием молекул между собой) и вращательных степе-ней свободы (движений) возникают коллективные колебания ре-шетки. Все это должно привести к тому, что когда возбуждается примесная молекула, часть энергии ее электронного перехода превращается в колебания решетки растворителя. Это должно размыть спектр и сдвинуть головные линии в спектрах поглощения и излучения друг относительно друга. В парафиновых раствори-телях мы наблюдаем резкий квазилинейчатый спектр в твердом кристаллическом теле и строго резонансный характер головных линий этого спектра.

Для того чтобы объяснить это явление, Ребане и Хижняков в своей работе [26] обратили внимание на аналогию между ме-ханизмом возникновения в твердом кристаллическом теле -линий с естественной шириной в эффекте Мессбауэра и узких линий в оптическом квазилинейчатом спектре в эффекте Шпольского. Тео-ретическое обоснование возможности получения таких спектров и оптической области приведено в работах Трифонова [27], Ре-бане и Хижнякова [28], где рассмотрены взаимодействия при-месной молекулы с основным кристаллом и авторы пришли к выводу о возможности безфононных электронных переходов, которые и приводят к появлению квазилинейчатых спектров.

Во многих случаях каждому электронно-колебательному переходу в квазилинейчатых спектрах соответствует целая группа линий. Структура ее не изменяется вдоль всего спектра флуоресценции или фосфоресценции, но очень сильно зависит от растворителя и условий кристаллизации раствора. Такие группы получили название мультиплетов. Так, например, квазилинейчатые спектры коронена и пирена в н-гексане состоят из дублетов [29, 25,30], а «мультиплеты» 3,4-бензпирена в н-гептане состоят из 4 ком-понентов [29,7]. В последнее время в качестве наиболее ве-роятной была принята гипотеза [7], согласно которой разные компоненты мультиплета принадлежат разным пространственно разделенным примесным молекулам, отличаю-щимся характером взаимодействия с кристаллической решеткой растворителя. В этом случае их спектры сдвинуты в шкале частот друг относительно друга на определенные расстояния. Однако очень большая сложность мультиплетов, наблюдаемых в спектрах при 4°К [7], наличие в области перехода в спектрах ряда молекул нерезонансных линий [30, 31, 7], существенное различие в характере мультиплетов в спектрах родственных соединений, имеющих одинаковые геометрические размеры и форму в одном и том же растворителе [31, 32], заставили авторов работы [29] бо-лее детально исследовать вопрос о природе «мультиплетов» в спектрах Шпольского. В этой работе приводятся эксперименталь-ные факты, свидетельствующие о том, что по крайней мере часть линий сложных мультиплетов может быть связана с одним и тем же излучающим центром, с наличием у него близко расположен-ных уровней. Последнее авторы связывают, в частности, со сня-тием вырождения по симметрии в результате воздействия на мо-лекулярные электронные уровни внешнего кристаллического поля или взаимодействия внутримолекулярных электронных и колеба-тельных движений. Методы анализа, основанные на использовании квазилинейчатых спектров, нашли широкое применение в онкологии, гигиене и санитарии в связи с проблемой, профилактики канцерогенных воздействий [6, 7,34], в геохимии при изучении органического вещества земной коры, сопро-вождающего различные геологические процессы, в том числе связанные с образованием полезных ископаемых [7], на производстве при исследовании изменений углеводородного состава в процессе термиче-ской обработки искусственных топлив и пеков [ 33, 7] и как метод контроля степени чистоты вещества [35].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.